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Logistics

• The midterm is the Thursday after break.

• Tuesday that week I will do midterm review (not cover any new
material).

• Midterm study material will be posted shortly.
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Summary

Last Time:

• Approximate matrix multiplication via importance sampling.

• Application to fast low-rank approximation via sampling.

Today:

• Finish up fast low-rank approximation.

• Stochastic trace estimation.

3



Quiz Review

4



Quiz Review
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Randomized Low-Rank approximation

5



Low-rank Approximation

Consider a matrix A ∈ Rn×d. We would like to compute an optimal
low-rank approximation of A. I.e., for k ≪ min(n,d) we would like to
find Z ∈ Rn×k with orthonormal columns satisfying:

∥A− ZZTA∥F = min
Z:ZTZ=I

∥A− ZZTA∥F.

Solving this exactly requires computing the top k left singular vectors
of A in O(nd2) time. We will give an approximation algorithm running
in O(nd+ nk2) time.
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Sampling Based Algorithm

Linear Time Low-Rank Approximation:

• Fix sampling probabilities p1, . . . ,pn with pi =
∥A:,i∥2

2
∥A∥2

F
.

• Select i1, . . . , it ∈ [n] independently, according to the
distribution Pr[ij = k] = pk for sample size t ≥ k.

• Let C = 1
t ·

∑t
j=1

1√pij
· A:,ij .

• Let Z ∈ Rn×k consist of the top k left singular vectors of C.

• By our approximate matrix multiplication analysis, if t = O( k
δϵ2 ),

∥CCT − AAT∥F ≤ ϵ/
√
k · ∥A∥2F with probability at least 1− δ.

• We will use this to show that an optimal basis for C (i.e., Z) is
nearly optimal for A.
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Sampling Based Algorithm
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Formal Analysis

Let Z∗ ∈ Rn×k contain the top left singular vectors of A – i.e.
Z∗ = argmin ∥A− ZZTA∥2F. Similarly, Z = argmin ∥C− ZZTC∥2F.

Claim 1: For any orthonormal Z ∈ Rn×k, and any matrix B,

∥B− ZZTB∥2F = tr(BBT)− tr(ZTBBTZ).

Claim 2: If ∥AAT − CCT∥F ≤ ϵ√
k
∥A∥2F, then for any orthonormal

Z ∈ Rn×k, tr(ZT(AAT − CCT)Z) ≤ ϵ∥A∥2F.

Proof from claims:

∥C− ZZTC∥2F ≤ ∥C− Z∗ZT∗C∥2F =⇒ tr(ZTCCTZ) ≥ tr(ZT∗CCTZ∗)

=⇒ tr(ZTAATZ) ≥ tr(ZT∗AATZ∗)− 2ϵ∥A∥2F
=⇒ ∥A− ZZTA∥2F ≤ ∥A− Z∗ZT∗A∥2F + 2ϵ∥A∥2F.
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Formal Analysis

Claim 2: If ∥AAT − CCT∥F ≤ ϵ√
k
∥A∥2F, then for any orthonormal

Z ∈ Rn×k, tr(ZT(AAT − CCT)Z) ≤ ϵ∥A∥2F.

Suffices to show that for any symmetric B ∈ Rn×n, and any
orthonormal Z ∈ Rn×k, tr(ZTBZ) ≤

√
k · ∥B∥F.

tr(ZTBZ) =
k∑
i=1

zTi Bzi

≤
k∑
i=1

λi(B) (By Courant-Fischer theorem)

≤
√
k ·

√√√√ k∑
i=1

λi(B)2 ≤
√
k ·

√√√√ n∑
i=1

λi(B)2 =
√
k · ∥B∥F.
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More Advanced Techniques

Norm based sampling gives an additive error approximation,
∥A− ZZTA∥2F ≤ minZ:ZTZ=I ∥A− ZZTA∥2F + 2ϵ∥A∥2F.

• Ideally, we would like a relative error approximation,
∥A− ZZTA∥2F ≤ (1+ ϵ) ·minZ:ZTZ=I ∥A− ZZTA∥2F.

• This can be achieved with more advanced non-uniform
sampling techniques, based on leverage scores or adaptive
sampling.

• Also possible using Johnson-Lindenstrauss type random
projection.

• We will cover these techniques in future classes.
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Stochastic Trace Estimation
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Matrix Trace

The trace of a matrix A ∈ Rn×n is the sum of it diagonal entries.

tr(A) =
n∑
i=1

Aii.

When A is diagonalizable (e.g., when it is symmetric) with
eigenvalues λ1, . . . , λn, tr(A) =

∑n
i=1 λi.

How many operations does it take to compute tr(A) given
explicit access to A?
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Implicit Trace Estimation

• Given implicit access to A ∈ Rn×n through matrix-vector
multiplication.

• Goal is to approximate tr(A) =
∑n

i=1 Aii.

Main question: How many matrix-vector multiplication “queries”
Ax1, . . . , Axm are required to approximate tr(A)?

Algorithms in this model are called matrix-free methods. Useful
when A is not given explicitly, but we have an efficient algorithm for
multiplying A by a vector (examples to come).
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Naive Exact Algorithm

Naive solution:

• Set xi = ei for i = 1, . . . ,n.
• Return tr(A) =

∑n
i=1 xTi Axi.

Returns exact solution, but requires n matrix-vector multiplies.

We will see how to use m ≪ n multiplies by using randomness
and allowing for small approximation error.
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Motivating Example

The number of triangles or other small ‘motifs’ is an important
metric of network connectivity. E.g., important in computing
the network clustering coefficient

How long does it take to exactly compute the number of
triangles in the graph?
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Motivating Example

Can use the adjacency matrix B ∈ {0, 1}n×n to write the number of
triangles in a linear algebraic way.

• Bij indicates the number of 1-step paths (edges) from i, j

• [B2]ij indicates the number of 2-step paths from i, j

• [B3]ij indicates the number of 3-step paths from i, j

Bii is the number of length 3-paths from i back to i. Thus,
1
6 tr(B3) = # triangles. 16



Motivating Example

1
6 tr(B3) = # triangles.

• Explicitly forming B3 and computing tr(B3) takes O(n3) time.

• Can multiply B3 by a vector in 3 · |E| = O(n2) operations.

• So a trace estimation algorithm using m queries, yields an
O(m · |E|) time approximate triangle counting algorithm.
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