COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 10

Logistics

- Problem Set 2 is due tonight at 11:59pm.
- One page project proposal due Tuesday 3/12.
- Quiz due Monday released after class.

Summary

Last Time:

- Count sketch for ℓ_{2} heavy-hitters - estimate all entries of a vector x to error $\pm \epsilon\|x\|_{2}$ from a linear sketch of dimension $O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$.
- Analysis via linearity of expectation, variance, Chebyshev's inequality and median trick.

Today:

- Approximate matrix multiplication via importance sampling.
- Application to fast low-rank approximation via sampling.

Approximate Matrix Multiplication

Matrix Multiplication Problem

Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute $C=A B$. Requires n^{ω} time where $\omega \approx 2.373$ in theory.

- We'll see how to compute an approximation in $O\left(n^{2}\right)$ time via a simple sampling approach.
- This is one of the fundamental building blocks of randomized numerical linear algebra.
- E.g. later in class we will use it to develop a fast algorithm for low-rank approximation.

Outer Product View of Matrix Multiplication

Inner Product View: $[A B]_{i j}=\left\langle A_{i,:}, B_{j,:}\right\rangle=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}$.

Outer Product View: Observe that $C_{k}=A_{:, k} B_{k,:}$ is an $n \times n$ matrix with $\left[C_{k}\right]_{i j}=A_{j k} \cdot B_{k j}$. So $A B=\sum_{k=1}^{n} A_{:, k} B_{k,:}$

Basic Idea: Approximate AB by sampling terms of this sum.

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{t}} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{j}},:}$.

Claim 1: $\mathbb{E}[\overline{\mathrm{C}}]=A B$
$\mathbb{E}[\overline{\mathrm{C}}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{\mathrm{i}_{\mathrm{j}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{j}},:}\right]=\frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}} \cdot A_{:, k} B_{k,:}=\frac{1}{t} \sum_{j=1}^{t} A B=A B$

Weighting by $\frac{1}{p_{i_{j}}}$ keeps the expectation correct. Key idea behind importance sampling based methods.

Optimal Sampling Probabilities

Claim 2: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\left\|A_{i, m}\right\|_{2}^{2} \cdot\left\|B_{m} ;\right\| \|_{2}^{2}}{p_{m}}$.
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set p_{1}, \ldots, p_{n} to minimize this error?
Set $p_{m}=\frac{\left\|A_{, j},\right\|_{2} \cdot\left\|B_{m, 2}\right\|_{2}}{\sum_{k=1}^{n=}\left\|A_{i, k},\right\|_{2} \cdot\left\|B_{k, 2}\right\| \|_{2}}$, giving:

$$
\begin{aligned}
\mathbb{E}\left[\|A B-\overline{\mathrm{C}}\|_{F}^{2}\right] & \leq \frac{1}{t} \sum_{m=1}^{n}\left\|A_{:, m}\right\|_{2} \cdot\left\|B_{m,:}\right\|_{2} \cdot\left(\sum_{k=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:} \cdot\right\| \|_{2}\right) \\
& =\frac{1}{t}\left(\sum_{m=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}\right)^{2}
\end{aligned}
$$

By the Cauchy-Schwarz inequality,
$\sum_{m=1}^{n}\left\|A_{;, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2} \leq \sqrt{\sum_{m=1}^{n}\left\|A_{;, k}\right\|_{2}^{2}} \cdot \sqrt{\sum_{m=1}^{n}\left\|B_{k,:}\right\|_{2}^{2}}=\|A\|_{F} \cdot\|B\|_{F}$
Overall: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{\|A\|_{F}^{2} \cdot\|B\|_{E}^{2}}{t}$.

Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{\|A\|_{F}^{2} \cdot\|B\|_{F}^{2}}{t}$.

- Setting $t=\frac{1}{\epsilon^{2} \sqrt{\delta}}$, by Markov's inequality:

$$
\operatorname{Pr}\left[\|A B-\overline{\mathrm{C}}\|_{F} \geq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F}\right] \leq \delta .
$$

- Note: Its not so obvious how to improve the dependence on δ here, but it can be done using more advanced concentration inequalities.

AMM Upshot

Upshot: Sampling $t=O\left(1 / \epsilon^{2}\right)$ columns/rows of A, B with probabilities proportional to $\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}$ yields, with good probability, an approximation $\overline{\mathrm{C}}$ with

$$
\|A B-\overline{\mathrm{C}}\|_{F} \leq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F} .
$$

- Probabilities take $O\left(n^{2}\right)$ time to compute. After sampling, \bar{C} takes $O\left(t \cdot n^{2}\right)$ time to compute.
- Can derive related bounds when probabilities are just approximate - i.e. $p_{k} \geq \beta \cdot \frac{\left\|A_{;, k}\right\|_{2} \cdot\left\|B_{k} ;\right\|_{2}}{\sum_{m=1}^{n=}\left\|A_{2} ;,\right\|\left\|_{2} \cdot\right\| B_{m ;} ; \|_{2}}$ for some $\beta>0$.
- Can also give bounds on $\|A B-\overline{\mathrm{C}}\|_{2}$, but analysis is much more complex. Will see tools in the coming weeks that let us do this.
- A classic example of using weighted importance sampling to decrease variance and in turn, sample complexity.

AMM Upshot

Think-Pair-Share 1: Ideally we would have relative error, $\|A B-\bar{C}\|_{F} \leq \epsilon\|A B\|_{F}$. Could we get this via a tighter analysis or better sampling distribution?

Randomized Low-Rank approximation

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k$?

Why does it suffice to consider low-rank approximations of this
form? For anv B with $\operatorname{rank}(B)=k$. let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal

Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O\left(n d+n k^{2}\right)$ time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i}=\frac{\left\|A_{, i, i}\right\|_{2}^{2}}{\|A\|_{F}^{2}}$.
- Select $\mathbf{i}_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[i_{j}=k\right]=p_{k}$ for sample size $t \geq k$.
- Let $\mathbf{C}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{\sqrt{P_{\mathrm{P}_{\mathrm{j}}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}}$,
- Let $\bar{Z} \in \mathbb{R}^{n \times k}$ consist of the top k left singular vectors of C.

Will use that ${C C^{\top}}^{\top}$ is a good approximation to the matrix product $A A^{\top}$.

Sampling Based Algorithm

Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with $t=\frac{k}{\epsilon \cdot \sqrt{\delta}}$ samples outputs $\overline{\mathrm{Z}} \in \mathbb{R}^{n \times k}$ satisfying with probability at least 1 - δ :

$$
\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \min _{z: Z Z=\|}\left\|A-Z Z^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
$$

Key Idea: By the approximate matrix multiplication result applied to the matrix product $A A^{\top}$, with probability $\geq 1-\delta$,

$$
\left\|A A^{T}-C C^{T}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}} \cdot\|A\|_{F} \cdot\left\|A^{\top}\right\|_{F}=\frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2} .
$$

Since ${C C^{T}}^{T}$ is close to $A A^{T}$, the top eigenvectors of these matrices (i.e. the top left singular vectors of A and C will not be too different.) So \bar{Z} can be used in place of the top left singular vectors of A to give a near optimal approximation.

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.
Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right)
$$

Claim 2: If $\left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.
Proof from claims:

$$
\begin{aligned}
\left\|\mathbf{C}-\overline{Z Z}^{\top} \mathrm{C}\right\|_{F}^{2} \leq\left\|C-Z_{*} Z_{*}^{\top} C\right\|_{F}^{2} & \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} C C^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} C C^{\top} Z_{*}\right) \\
& \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} A A^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} A A^{\top} Z_{*}\right)-2 \epsilon\|A\|_{F}^{2} \\
& \Longrightarrow\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq\left\|A-Z_{*} Z_{*}^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
\end{aligned}
$$

