COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 10

Logistics

- Problem Set 2 is due tonight at 11:59pm.
. One page project proposal due Tuesday 3/12.
- Quiz due Monday released after class.

Summary

Last Time:

- Count sketch for ℓ_{2} heavy-hitters - estimate all entries of a vector x to error $\pm \epsilon\|x\|_{2}$ from a linear sketch of dimension $O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$.
Analysis via linearity of expectation, variance, Chebyshev's inequality and median trick.

Summary

Last Time:

- Count sketch for ℓ_{2} heavy-hitters - estimate all entries of a vector x to error $\pm \epsilon\|x\|_{2}$ from a linear sketch of dimension $O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$.
- Analysis via linearity of expectation, variance, Chebyshev's inequality and median trick.

Today:

- Approximate matrix multiplication via importance sampling.
- Application to fast low-rank approximation via sampling.

Approximate Matrix Multiplication

Matrix Multiplication Problem

Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute $C=A B$. Requires n^{ω} time where $\omega \approx 2.373$ in theory.

- We'll see how to compute an approximation in $O\left(n^{2}\right)$ time via a simple sampling approach.
- This is one of the fundamental building blocks of randomized numerical linear algebra.
- E.g. later in class we will use it to develop a fast algorithm for low-rank approximation.

Outer Product View of Matrix Multiplication

Inner Product View: $[A B]_{i j}=\left\langle A_{i,,}, B_{j,:}\right\rangle=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}$.

Outer Product View: Observe that $C_{k}=A_{i, k} B_{k,:}$ is an $n \times n$ matrix with $\left[C_{k}\right]_{i j}=A_{j k} \cdot B_{k j}$. So $A B=\sum_{k=1}^{n} A_{:, k} B_{k,:}$

Basic Idea: Approximate AB by sampling terms of this sum.

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \underline{\frac{1}{p_{\mathrm{i}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}},:}$.

$$
C_{\mathbb{E}}=C=A B
$$

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}},:}$.

Claim 1: $\mathbb{E}[\bar{C}]=A B$

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}},:}$.

Claim 1: $\mathbb{E}[\bar{C}]=A B$
$\mathbb{E}[\overline{\mathbf{C}}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E} \underbrace{\left[\frac{1}{p_{i_{\mathrm{j}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{j}},:}\right]}$

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

$$
p_{1}=\cdots=p_{n}=\frac{1}{n}
$$

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}}, \cdot}$.

$$
\underset{F}{\cap} \ldots A_{i ; j} B_{j}=0
$$

Claim 1: $\mathbb{E}[\bar{C}]=A B$

$$
\begin{aligned}
\mathbb{E}[\bar{C}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{i_{j}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}} ;:}\right] & =\frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{p} \cdot \frac{1}{p_{k}} \cdot A_{:, k} B_{k,:} \\
& =\frac{1}{+} \sum_{j=1}^{t} A B=A B
\end{aligned}
$$

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}},:}$.

Claim 1: $\mathbb{E}[\overline{\mathrm{C}}]=A B$
$\mathbb{E}[\overline{\mathbf{C}}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{\mathrm{i}_{\mathrm{j}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{j}},:}\right]=\frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}} \cdot A_{:, k} B_{k,:}=\frac{1}{t} \sum_{j=1}^{t} A B$

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{j}},:}$.

Claim 1: $\mathbb{E}[\overline{\mathrm{C}}]=A B$
$\mathbb{E}[\overline{\mathrm{C}}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{\mathrm{i}_{\mathrm{j}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} \mathrm{B}_{\mathrm{i}, ;}\right]=\frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}} \cdot A_{:, k} B_{k,:}=\frac{1}{t} \sum_{j=1}^{t} A B=A B$

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}},:}$.

Claim 1: $\mathbb{E}[\overline{\mathrm{C}}]=A B$
$\mathbb{E}[\overline{\mathrm{C}}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{\mathrm{i}_{\mathrm{j}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} \mathrm{B}_{\mathrm{i}, ;}\right]=\frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}} \cdot A_{:, k} B_{k,:}=\frac{1}{t} \sum_{j=1}^{t} A B=A B$

Weighting by $\frac{1}{p_{i j}}$ keeps the expectation correct. Key idea behind importance sampling based methods.

Optimal Sampling Probabilities
Claim 2: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A, m\|_{2}^{2} \cdot\left\|B_{m,}\right\|_{2}^{2}}{\underline{p_{m}}}$.
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set.

$$
\sum_{i j}\left[(A B)_{i j}-\bar{c}_{i j}\right]^{2}=\sum_{i j} \operatorname{Var}\left(\bar{c}_{i j}\right)
$$

Optimal Sampling Probabilities
Claim 2: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A, m, m\|_{2}^{2} \cdot\left\|B_{m,}\right\|_{2}^{2}}{p_{m}}=V \quad P_{m} \propto\left\|A_{;, m}\right\|_{2}^{2}\| \|_{m,} \|_{2}$
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set. $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \quad \sum p_{i}=1$ Question: How should we set p_{1}, \ldots, p_{n} to minimize this error?

$$
\frac{\partial V}{\partial p_{n}}=\frac{-\left\|A_{:, m}\right\|_{2}^{2} \cdot\left\|B_{m}:\right\|_{2}^{2}}{p_{m}^{2}}
$$

$$
\begin{aligned}
& \frac{\partial V}{p_{1}}=\frac{\partial V}{p_{2}}=\ldots=\frac{\partial V}{p_{n}} 刀^{\text {si? }} p_{\text {in }} \\
& \frac{\partial V}{p_{i}}>\frac{\partial V}{p_{j}} \quad \begin{array}{l}
p_{i}^{\prime}=p_{i}-\varepsilon \\
p_{j}^{\prime}=p_{j}+\varepsilon
\end{array} \\
& \text { Want: } \\
& p_{m}=\frac{\left\|A_{j}, m\right\|_{2} \cdot\left\|B_{r,}:\right\|_{2}}{\sum_{j=1}^{n}\left\|A_{i} ; j\right\|_{2}\left\|B_{j:}\right\|_{2}}
\end{aligned}
$$

so how should I set

Optimal Sampling Probabilities

Claim 2: $\mathbb{E}\left[\|A B-\overline{\mathrm{C}}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\left\|A_{i, m}\right\|_{2} \cdot\left\|B_{m,}\right\|_{2}^{2}}{p_{m}}$.
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set p_{1}, \ldots, p_{n} to minimize this error?

$$
\mathbb{E}\left[\|A B-\overline{\bar{C}}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n}\left\|A_{:, m}\right\|_{2} \cdot\left\|B_{m,:}\right\|_{2} \cdot\left(\sum_{k=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}\right)
$$

Optimal Sampling Probabilities
Claim 2: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\left\|A_{i}, m\right\|_{2}^{2}\left\|B_{m},\right\| \|_{2}^{2}}{p_{m}} . \quad \operatorname{Var}(\bar{c}) \leq \mathbb{E}^{-} \bar{C}^{r}$
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set p_{1}, \ldots, p_{n} to minimize this error?
Set $p_{m}=\frac{\left\|A_{i, m}\right\|_{2} \cdot\left\|B_{m, i} \cdot\right\|_{2}}{\sum_{k=1}^{n}\left\|A_{i, k},\right\|_{2} \cdot\left\|B_{p,:}\right\| \|_{2}}$, giving:

$$
\begin{aligned}
& \mathbb{E}\left[\|A B-\overline{\mathrm{C}}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n}\left\|A_{:, m}\right\|_{2} \cdot\left\|B_{m,:}\right\|_{2} \cdot\left(\sum_{k=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}\right) \\
& =\frac{1}{t}\left(\sum_{m=1}^{n}\left\|A_{: m}\right\|_{2} \cdot\left\|B_{n}:\right\|_{2}\right)^{2} \\
& {\left[\begin{array}{lll}
1 & i & \\
1 & 1 & A \\
1 & B^{2}
\end{array}\right] \quad \bar{C}=\frac{1}{1} \begin{array}{l}
1 \\
1 \\
1 \\
\\
\\
\end{array} \sum_{j=1}^{+} \frac{1}{P_{i j}} A_{i: i}, B_{i j}:} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \cdot \frac{1}{+} \sum_{j=1}^{+} \frac{1}{p_{i j}}=n\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1
\end{array}\right]=A B}
\end{aligned}
$$

Optimal Sampling Probabilities

Claim 2: $\mathbb{E}\left[\|A B-\bar{C}\|_{\vec{F}}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A, m\|_{2}^{2}\left\|_{2}\right\| \mathbb{B}_{m}, \|_{2}^{2}}{p_{m}}$.
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set p_{1}, \ldots, p_{n} to minimize this error?
Set $p_{m}=\frac{\left\|A_{, j}, m\right\|_{2} \cdot\left\|B_{m, 2} \cdot\right\|_{2}}{\sum_{k=1}^{h}\left\|A_{i, k},\right\|_{2} \cdot\left\|B_{k, 2},\right\| \|_{2}}$, giving:

$$
\begin{aligned}
\mathbb{E}\left[\|A B-\overline{\mathrm{C}}\|_{F}^{2}\right] & \leq \frac{1}{t} \sum_{m=1}^{n}\left\|A_{:, m}\right\|_{2} \cdot\left\|B_{m,:}\right\|_{2} \cdot\left(\sum_{k=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:} \cdot\right\| 2\right) \\
& =\frac{1}{t}\left(\sum_{m=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}:\right\|_{2}\right)^{2}
\end{aligned}
$$

By the Cauchy-Schwarz inequality,

$$
\sum_{m=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2} \leq \sqrt{\sum_{m A=1}^{n}\left\|A_{:, k}\right\|_{F}^{2}} \cdot \sqrt{\sum_{\| B=1}^{\sum_{m}^{n}\| \|_{k,:}^{2}} \|_{2}^{2}}=\|A\|_{F} \cdot\|B\|_{F}
$$

Optimal Sampling Probabilities

Claim 2: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\left\|A_{m}\right\|\left\|_{2}^{2}\right\|_{2}\left\|_{m},\right\| \|_{2}^{2}}{p_{m}}$.
Good exercsie - uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set p_{1}, \ldots, p_{n} to minimize this error?
Set $p_{m}=\frac{\left\|A_{, j}, m\right\|_{2} \cdot\left\|B_{m, 2} \cdot\right\|_{2}}{\sum_{k=1}^{h}\left\|A_{i, k},\right\|_{2} \cdot\left\|B_{k, 2},\right\| \|_{2}}$, giving:

$$
\begin{aligned}
\mathbb{E}\left[\|A B-\overline{\mathrm{C}}\|_{F}^{2}\right] & \leq \frac{1}{t} \sum_{m=1}^{n}\left\|A_{:, m}\right\|_{2} \cdot\left\|B_{m,:}\right\|_{2} \cdot\left(\sum_{k=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:} \cdot\right\| 2\right) \\
& =\frac{1}{t}\left(\sum_{m=1}^{n}\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}:\right\|_{2}\right)^{2}
\end{aligned}
$$

By the Cauchy-Schwarz inequality,
$\sum_{m=1}^{n}\left\|A_{;, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2} \leq \sqrt{\sum_{m=1}^{n}\left\|A_{:, k}\right\|_{2}^{2}} \cdot \sqrt{\sum_{m=1}^{n}\left\|B_{k,:}\right\|_{2}^{2}}=\|A\|_{F} \cdot\|B\|_{F}$
Overall: $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{\|A\|_{F}^{2} \cdot\|B\|_{\mathbb{E}}^{2}}{t}$.

Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{\|A\|_{\cdot}^{2} \cdot\|B\|_{F}^{2}}{t}$.

Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{\|A\|_{F}^{2} \cdot\|B\|_{E}^{2}}{t}$.

- Setting $t=\frac{1}{\epsilon^{2} \sqrt[{\sqrt{\delta}}]{2}}$, by Markov's inequality:

$$
\begin{aligned}
& \operatorname{Pr}\left[\|A B-\bar{C}\|_{F} \geq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F}\right] \leq \delta . \\
& \operatorname{Pr}\left[\|A B-\bar{C}\|_{F}^{2} \geqslant \varepsilon^{2}\|A\|_{F}^{2} \cdot\|B\|_{F}^{2}\right] \leq \frac{\frac{1}{t}\|A\|_{F}^{2}\|B\|_{F}^{2}}{\varepsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}} \\
&=\delta
\end{aligned}
$$

Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}\left[\|A B-\bar{C}\|_{F}^{2}\right] \leq \frac{\|A\|_{F}^{2} \cdot\|B\|_{F}^{2}}{t}$.

- Setting $t=\frac{1}{\epsilon^{2}{ }^{2 \pi}}$, by Markov's inequality:

$$
\operatorname{Pr}\left[\|A B-\bar{C}\|_{F} \geq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F}\right] \leq \delta .
$$

- Note: Its not so obvious how to improve the dependence on δ here, but it can be done using more advanced concentration inequalities. - Mahoney's book

$$
t=\frac{\log ^{2}(1 / 0)}{\xi^{2}}
$$

AMM Upshot

Upshot: Sampling $t=O\left(1 / \epsilon^{2}\right)$ columns/rows of A, B with probabilities proportional to $\left\|A_{i, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}$ yields, with good probability, an approximation $\overline{\mathrm{C}}$ with

$$
\|A B-\overline{\mathrm{C}}\|_{F} \leq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F} .
$$

AMM Upshot

Upshot: Sampling $t=O\left(1 / \epsilon^{2}\right)$ columns/rows of A, B with probabilities proportional to $\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}$ yields, with good probability, an approximation $\overline{\mathrm{C}}$ with

$$
\|A B-\overline{\mathrm{C}}\|_{F} \leq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F} .
$$

- Probabilities take $O\left(n^{2}\right)$ time to compute. After sampling, \bar{C} takes $O\left(t \cdot n^{2}\right)$ time to compute.

AMM Upshot

Upshot: Sampling $t=O\left(1 / \epsilon^{2}\right)$ columns/rows of A, B with probabilities proportional to $\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}$ yields, with good probability, an approximation $\overline{\mathrm{C}}$ with

$$
\|A B-\overline{\mathrm{C}}\|_{F} \leq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F} .
$$

- Probabilities take $O\left(n^{2}\right)$ time to compute. After sampling, \bar{C} takes $O\left(t \cdot n^{2}\right)$ time to compute.
- Can derive related bounds when probabilities are just approximate - ie. $p_{k} \geq \beta \cdot \frac{\left\|A_{2}, k\right\|_{2} \cdot\left\|B_{k} ;\right\| 2}{\sum_{m=1}^{n}\left\|A_{2}, m\right\|_{2} \cdot\left\|B_{m} ;\right\| \|_{2}}$ for some $\beta>0$.

$$
l \beta=.5
$$

AMM Upshot

Upshot: Sampling $t=O\left(1 / \epsilon^{2}\right)$ columns/rows of A, B with probabilities proportional to $\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}$ yields, with good probability, an approximation $\overline{\mathrm{C}}$ with

$$
\|A B-\overline{\mathrm{C}}\|_{F} \leq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F} .
$$

- Probabilities take $O\left(n^{2}\right)$ time to compute. After sampling, \bar{C} takes $O\left(t \cdot n^{2}\right)$ time to compute.
- Can derive related bounds when probabilities are just approximate - ie. $p_{k} \geq \beta \cdot \frac{\left\|A_{;}, k\right\|_{2} \cdot\left\|B_{k} ;\right\| \|_{2}}{\sum_{m=1}^{n}\left\|A_{;}, \vec{m}\right\|_{2} \cdot\left\|B_{m} ;\right\|_{2}}$ for some $\beta>0$.
- Can also give bounds on $\|A B-\bar{C}\|_{2}$, but analysis is much more complex. Will see tools in the coming weeks that let us do this.

Imetrix concantsation

AMM Upshot

Upshot: Sampling $t=O\left(1 / \epsilon^{2}\right)$ columns/rows of A, B with probabilities proportional to $\left\|A_{:, k}\right\|_{2} \cdot\left\|B_{k,:}\right\|_{2}$ yields, with good probability, an approximation $\overline{\mathrm{C}}$ with

$$
\|A B-\overline{\mathrm{C}}\|_{F} \leq \epsilon \cdot\|A\|_{F} \cdot\|B\|_{F} .
$$

- Probabilities take $O\left(n^{2}\right)$ time to compute. After sampling, \bar{C} takes $O\left(t \cdot n^{2}\right)$ time to compute.
- Can derive related bounds when probabilities are just approximate - i.e. $p_{k} \geq \beta \cdot \frac{\left\|A_{i, k}\right\|_{2} \cdot\left\|B_{k} ;\right\| \|_{2}}{\sum_{m=1}^{n}\left\|A_{;},\right\|\left\|_{2} \cdot\right\| B_{m}:\| \|_{2}}$ for some $\beta>0$.
- Can also give bounds on $\|A B-\bar{C}\|_{2}$, but analysis is much more complex. Will see tools in the coming weeks that let us do this.
- A classic example of using weighted importance sampling to decrease variance and in turn, sample complexity.

AMM Upshot

$$
\|A B\|_{F} \leq\|A\|_{F} \cdot\|B\|_{F}
$$

Think-Pair-Sheran 1 $\|A B-\bar{C}\|_{F} \leq \in \epsilon_{0} A B \|_{F}$. . Could we get this via a tighter analysis or better sampling distribution?

to achieve error $\varepsilon \| A B \mid k I$ need to know if $A B=0$ or not.

Randomized Low-Rank approximation

Low-rank Approximation
Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F} .
$$

$\angle S A$
$P(A$
one of the main ways of approximotim notices

Low-rank Approximation
Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{Z: Z^{T} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}
$$

Why is $\operatorname{rank}\left(\overline{Z_{Z}^{\top}} A\right) \leq k$?

$$
L^{2: L} \neq \mathbb{R}^{n \times k}
$$

$$
\text { st. } z^{\top} z=I
$$

column are spanned in columns of z of which tree ate lc

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F} .
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k$?

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-\underline{Z Z^{\top}} A\right\|_{F}=\min _{Z: z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k ? \quad \min _{B: \operatorname{mank}(B) \leq k} \mathbb{A}-B \|_{F}$
Why does it suffice to consider low-rank approximations of this form?

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-\underline{Z Z^{\top}} A\right\|_{F}=\min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k$?
Why does it suffice to consider low-rank approximations of this form? For any B with $\operatorname{rank}(B)=k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B^{\prime} s column span. Then $\left\|A-Z Z^{\top} A\right\|_{F} \leq\|A-B\|_{F}$. So

$$
\min _{z: Z^{T} Z=I}\left\|A-Z Z^{\top} A\right\|_{F}=\min _{B: \operatorname{rank} B=k}\|A-B\|_{F} .
$$

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{Z: z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F} .
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k$?
Why does it suffice to consider low-rank approximations of this form? For any B with $\operatorname{rank}(B)=k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B^{\prime} s column span. Then $\left\|A-Z Z^{\top} A\right\|_{F} \leq\|A-B\|_{F}$. So

$$
\min _{Z: Z^{\top} Z=I}\left\|A-Z Z^{\top} A\right\|_{F}=\min _{B: r a n k B=k}\|A-B\|_{F} .
$$

How would one compute the optimal basis Z ?

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F} .
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k$?
Why does it suffice to consider low-rank approximations of this
form? For any B with $\operatorname{rank}(B)=k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal
basis for B^{\prime} s column span. Then $\left\|A-Z Z^{\top} A\right\|_{F} \leq\|A-B\|_{F}$. So
$A A^{\top}$

$$
\min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}=\min _{B: \operatorname{rank} B=k}\|A-B\|_{F} .
$$

How would one compute the optimal basis Z ? Compute the top k left singular vectors of A, which requires $O\left(n d^{2}\right)$ time, or $O(n d k)$ time for a high accuracy approximation with an iterative method.

$$
O\left(n d+n k^{2}\right)
$$

Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O\left(n d+n k^{2}\right)$ time.

Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O\left(n d+n k^{2}\right)$ time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i}=\frac{\|A, j,\|_{2}^{2}}{\|A\|_{F}^{2}}$.
- Select $\mathbf{i}_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathrm{j}}=k\right]=p_{k}$ for sample size $t \geq k$.
- Let $\mathbf{C}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{\sqrt{P_{\mathrm{i}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}}$.
- Let $\bar{Z} \in \mathbb{R}^{n \times k}$ consist of the top k left singular vectors of C.

Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O\left(n d+n k^{2}\right)$ time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i}=\frac{\|A, j,\|_{2}^{2}}{\|A\|_{F}^{2}}$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[i_{j}=k\right]=p_{k}$ for sample size $t \geq k_{i}$

- Let $\bar{Z} \in \mathbb{R}^{n \times k}$ consist of the top k left singular vectors of C.

Will use that CC^{\top} is a good approximation to the matrix product $A A^{\top}$.

Sampling Based Algorithm

Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
$t=\frac{k}{\epsilon^{2} \cdot \sqrt{\delta}}$ samples outputs $\bar{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least $1-\delta$:

$$
\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
$$

Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
$t=\frac{k}{\epsilon^{2} \cdot \mathcal{N}_{8}^{*}}$ samples outputs $\bar{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least $1-\delta$:

$$
\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
$$

Key Idea: By the approximate matrix multiplication result applied to the matrix product $A A^{\top}$, with probability $\geq 1-\delta$,

$$
\begin{aligned}
& \left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}} \cdot\|A\|_{F} \cdot\left\|A^{\top}\right\|_{F}=\frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2} . \\
+ & \sum_{j=1}^{+} C_{i, i} \cdot C_{i j}^{\top} \\
= & \frac{1}{+} \sum_{j=1}^{+} \frac{A_{i j}}{\sqrt{P_{i j}}} \frac{A_{i i j}^{\top}}{\sqrt{P_{i j}}}=\frac{1}{+} \sum_{j} \frac{1}{P_{i j}} A_{i i j}, A_{i i j}^{\top}=\text { Amm }
\end{aligned}
$$

Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
$t=\frac{k}{\epsilon^{2} \cdot \sqrt{\delta}}$ samples outputs $\bar{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least $1-\delta$:

$$
\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
$$

Key Idea: By the approximate matrix multiplication result applied to the matrix product $A A^{\top}$, with probability $\geq 1-\delta$,

$$
\left\|A A^{T}-C C^{T}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}} \cdot\|A\|_{F} \cdot\left\|A^{T}\right\|_{F}=\frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2} .
$$

Since $C C^{\top}$ is close to $A A^{\top}$, the top eigenvectors of these matrices (i.e. the top left singular vectors of A and C will not be too different.) So \bar{Z} can be used in place of the top left singular vectors of A to give a near optimal approximation.

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.

Formal Analysis
Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - ie. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.
Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\begin{aligned}
& \left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right) . \\
& \|A\|_{F}^{2}=\operatorname{tr}\left(A A^{+}\right) \\
& \left.\left\|B-Z Z_{B}^{\top}\right\|_{F}^{2} \text { 壮 }\left(B-Z Z^{+} B\right)\left(B-Z Z^{\top} B\right)^{\top}\right) \\
& =\operatorname{tr}\left(B B^{\top}-Z Z^{\top} B B^{\top}-B B^{\top} Z z^{\top}+Z z^{\top} B B^{\top} z^{\top}\right) \\
& \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& +s\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right)
\end{aligned}
$$

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right) .
$$

Claim 2: If $\left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.
Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right) .
$$

Claim 2: If $\left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.
Proof from claims:

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.
Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right) .
$$

Claim 2: If $\left\|A A^{\top}-\mathrm{CC}^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.
Proof from claims:

$$
\left\|\mathrm{C}-\overline{\mathrm{ZZ}}^{\top} \mathrm{C}\right\|_{F}^{2} \leq\left\|\mathrm{C}-Z_{*} Z_{*}^{\top} \mathrm{C}\right\|_{F}^{2} \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} C C^{\top} \overline{\mathrm{Z}}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} \mathrm{CC}^{\top} Z_{*}\right)
$$

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.
Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|\underline{B-Z Z^{\top}} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right) .
$$

Claim 2: If $\left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.

Proof from claims:

$$
\begin{aligned}
\left\|C-\overline{Z Z}^{\top} C\right\|_{F}^{2} \leq\left\|C-Z_{*} Z_{*}^{\top} C\right\|_{F}^{2} & \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} C C^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} C C^{\top} Z_{*}\right) \\
& \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} A A^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} A A^{\top} Z_{*}\right)-2 \epsilon\|A\|_{F}^{2}
\end{aligned}
$$

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.
Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right) .
$$

Claim 2: If $\left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.
Proof from claims:

$$
\begin{aligned}
\left\|C-\overline{Z Z}^{\top} C\right\|_{F}^{2} \leq\left\|C-Z_{*} Z_{*}^{\top} C\right\|_{F}^{2} & \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} C C^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} C C^{\top} Z_{*}\right) \\
& \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} A A^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} A A^{\top} Z_{*}\right)-2 \epsilon\|A\|_{F}^{2} \\
& \Longrightarrow\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \frac{\left\|A-Z_{*} Z_{*}^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .}{}
\end{aligned}
$$

