
COMPSCI 614: Problem Set 5

Due: Tuesday, 5/13 by 11:59pm in Gradescope.

Note: This problem set is OPTIONAL. If you complete it, it can be used to replace
your lowest score on the first four problem sets.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. ℓ1 Subspace Embedding via Sampling (6 points)

Given a matrix A ∈ Rn×d we would like to find a sampling matrix S ∈ Rm×n such that, with
probability at least 1 − δ, for all x ∈ Rd, (1 − ϵ)∥Ax∥1 ≤ ∥SAx∥1 ≤ (1 + ϵ)∥Ax∥1, where ∥y∥1 =∑n

i=1 |y(i)| is the ℓ1 norm.

To do so, we define the ℓ1 sensitivity of row i as σi = maxx∈Rd
|[Ax](i)|
∥Ax∥1 and let pi =

σi∑n
j=1 σj

.

We pick each row of S independently, letting Sj,: =
1

m·pi ei, with probability pi, where ei is the ith

standard basis vector.
Let T =

∑n
i=1 σi. It can be shown that T ≤ d – this is maybe not surprising given the analogy

to the ℓ2 leverage scores, which sum to exactly d, but it is non-trivial to prove. You may use it as
a fact going forward.

1. (4 points) Prove that for any fixed x ∈ Rd, if m = O
(
d log(1/δ)

ϵ2

)
, then with probability at least

1− δ, (1− ϵ)∥Ax∥1 ≤ ∥SAx∥1 ≤ (1+ ϵ)∥Ax∥1. Hint: Assume without loss of generality that
∥Ax∥1 = 1 and apply a Bernstein inequality. You’ll want to target bounding the variance
and maximum magnitude terms by T/m.

2. (2 points) Prove that for m = O
(
d2 log(1/ϵ)+d log(1/δ)

ϵ2

)
, with probability 1− δ, S satisfies: for

all x ∈ Rd, (1 − ϵ)∥Ax∥1 ≤ ∥SAx∥1 ≤ (1 + ϵ)∥Ax∥1. Hint: Follow the ϵ-net approach used
in class for the ℓ2 subspace embedding proof. You may use that the same net size bound of
(4/ϵ)d holds for the ℓ1 norm.
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2. Randomized Triangle Coloring (6 points)

A graph is k-colorable if there is an assignment of each node to one of k colors such that no two
nodes with the same color are connected by an edge.

1. (2 points) Show that if a graph is 3-colorable then there is a coloring of the graph using 2
colors such that no triangle in monochromatic. I.e., for any three nodes u, v, w such that
(u, v), (v, w), and (u,w) are all edges, we do not have u, v, w all assigned to the same color
(but we may have u, v assigned to the same color when (u, v) is an edge).

2. (4 points) Consider the following algorithm for coloring a 3-colorable graph with 2 colors so
that no triangle is monochromatic. Start with an arbitrary 2-coloring (some triangles may be
monochromatic, so it’s not necessarily a valid coloring). While there are any monochromatic
triangles, pick one arbitrarily and change the color of a randomly chosen vertex in that
triangle. Give an upper bound on the expected number of steps of this process before a valid
2-coloring with all non-monochromatic triangles is found.

Hint: Shoot for a polynomial, not an exponential number of steps here. Use the fact that
part (1) actually implies the existence of many 2-colorings with non-monochromatic triangles.

3. Move to Top Shuffling (8 points)

Consider shuffling a deck of n unique cards by randomly picking a card and moving it to the top
of the deck. Observe that with probability 1/n, the top card is picked and so the order does not
change from one step to the next.

1. (2 points) Prove that this Markov chain is irreducible and aperiodic.

2. (2 points) Prove that the chain converges to the the uniform distribution over all n! possible
permutations of the cards.

3. (2 points) In class, we argued that after t = n log(n/ϵ) steps, the distribution of states qt in
this Markov chain satisfies ∥qt − π∥TV ≤ ϵ. Say you are a casino, and you offer a game of
pure chance where the customer must wager $1. The game uses the shuffled deck of cards
to determine a pay out somewhere between $0 and $1000. You have calculated that, when
the deck is ordered according to a uniform random permutation (i.e., according to π), your
expected winnings per game are $0.1. How small must you set ϵ to ensure that your expected
winnings are at least $.09?

4. (2 points) Argue that our mixing time bound is essentially tight. In particular, show that if
we run the Markov chain for t ≤ cn log n steps for small enough constant c, then ∥qt−π∥TV ≥
99/100. I.e., we are very far from a uniformly random permutation.

Hint: Start by arguing that if t ≤ cn log n for small enough c, with high probability there
are

√
n cards which are never swapped in the shuffle. Use the coupon collector analysis from

Lecture 2. Then consider the probability that we have
√
n consecutive cards in order after a

uniform random shuffle, vs. after this shuffle starting from an ordered deck. Use the different
in probabilities to lower bound the TV distance.
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