COMPSCI 614: Problem Set 4

Due: $4 / 22$ by 11:59pm in Gradescope.

Instructions:

- You are allowed to, and highly encouraged to, work on this problem set in a group of up to three members.
- Each group should submit a single solution set: one member should upload a pdf to Gradescope, marking the other members as part of their group in Gradescope.
- You may talk to members of other groups at a high level about the problems but not work through the solutions in detail together.
- You must show your work/derive any answers as part of the solutions to receive full credit.

Hint: The following two inequalities may be helpful throughout the course: for any $x>0,(1+$ $x)^{1 / x} \leq e$ and $(1-x)^{1 / x} \leq 1 / e$.

1. Tighter Bounds for Trace Estimation (4 points)

Consider any matrix $A \in \mathbb{R}^{n \times n}$. Use the Hanson-Wright inequality to show that if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m} \in$ $\{-1,1\}^{n}$ are chosen to have independent and uniformly distributed ± 1 entries, then for $m=$ $O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right), \overline{\mathbf{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ satisfies,

$$
\operatorname{Pr}\left[|\overline{\mathbf{T}}-\operatorname{tr}(A)|>\epsilon\|A\|_{F}\right] \leq \delta
$$

How does this compare to the bound proven in class using Chebyshev's inequality?

2. A Naive Net Bound (4 points)

In class we showed via a volume argument that there is an ϵ-net over the unit ball $\mathcal{S}=\{y \in$ $\left.\mathbb{R}^{d}:\|y\|_{2}=1\right\}$ containing $\left(\frac{4}{\epsilon}\right)^{d}$ points. Consider instead using the following simple net: let $G=[-1,-1+\delta,-1+2 \delta, 0, \delta, 2 \delta, \ldots, 1-\delta, 1]$ be a grid of spacing δ over $[-1,1]$ and let $\mathcal{N}=G^{d}$ be the set of all d-dimensional vectors on the d-dimension grid defined by G.
How small must we set δ such that \mathcal{N} is an ϵ-net for \mathcal{S}. How large of a net does this yield? How would using this construction instead of the one shown in class affect our final bounds on the required dimension for subspace embedding?

3. Matrix Concentration from Scratch (8 points)

Consider a random symmetric matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ where $\mathbf{M}_{i j}=\mathbf{M}_{j i}$ is set independently to 1 with probability $1 / 2$ and -1 with probability $1 / 2$. Let $\|\mathbf{M}\|_{2}=\max _{x:\|x\|=1}\|\mathbf{M} x\|_{2}$ be the spectral norm of \mathbf{M}. Recall that $\|\mathbf{M}\|_{2}$ is equal to the largest singular value of \mathbf{M}, which equals the largest magnitude of one of its eigenvalues.

1. (2 points) Give upper and lower bounds on $\|\mathbf{M}\|_{2}$ that hold deterministically - i.e., for any random choice of the entries of \mathbf{M}. Hint: You may want to use $\|\mathbf{M}\|_{F}$, and its relation to the singular values to derive your bounds.
2. (2 points) Observe that you can also write $\|\mathbf{M}\|_{2}=\max _{x:\|x\|=1}\left|x^{T} \mathbf{M} x\right|$. Show that for any $x \in \mathbb{R}^{n}$ with $\|x\|_{2}=1$, with probability $\geq 1-\delta,\left|x^{T} \mathbf{M} x\right| \leq c \sqrt{\log (1 / \delta)}$ for some constant c. Hint: Use Hoeffding's inequality, which is a useful variant on the Bernstein inequality. For independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$, and scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ with $\mathbf{X}_{i} \in\left[a_{i}, b_{i}\right]$, $\operatorname{Pr}\left[\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]\right| \geq t\right] \leq 2 \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)$.
3. (4 points) Prove that with probability $1-\frac{1}{n^{c_{1}}},\|\mathbf{M}\|_{2} \leq c_{2} \sqrt{n \log n}$ for some fixed constants c_{1}, c_{2}. Hint: Use an ϵ-net for $\epsilon=1 / n$ and part (1).

4. Compressed Sensing From Subspace Embedding (6 points)

Given a vector $x \in \mathbb{R}^{n}$ and a random matrix $\mathbf{S} \in \mathbb{R}^{m \times n}$, consider computing $\mathbf{y}=\mathbf{S} x$. If $m<n$, you can in general not determine $x \in \mathbb{R}^{n}$ from $\mathbf{y} \in \mathbb{R}^{m}$, since \mathbf{S} is not an invertible map. Here, we will argue that you can recover x, assuming that it is k-sparse for small enough k. I.e., that it has at most k nonzero entries. This is known as compressed sensing or sparse recovery.

1. (2 points) Assume that \mathbf{S} satisfies the distributional JL lemma/subspace embedding theorem proven in class. I.e., for any $A \in \mathbb{R}^{n \times d}$, if $m=O\left(\frac{d+\log (1 / \delta)}{\epsilon^{2}}\right)$, then with probability at least $1-\delta, \mathbf{S}$ is an ϵ-subspace embedding for A. Prove that if $m=O\left(\frac{k \log (n / k)+\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $\geq 1-\delta$, for all $z \in \mathbb{R}^{n}$ such that z is k-sparse, $(1-\epsilon)\|z\|_{2} \leq\|\mathbf{S} z\|_{2} \leq(1+\epsilon)\|z\|_{2}$. Hint: Show that with high probability, \mathbf{S} is an ϵ-subspace embedding simultaneously for $\binom{n}{k}$ different matrices.
2. (2 points) Use the above result, applied with $k^{\prime}=2 k$, to show that if $m=O(k \log (n / k)+\log (1 / \delta))$, and $x \in \mathbb{R}^{n}$ is k-sparse, then with probability $\geq 1-\delta, x$ can be recovered exactly from $\mathbf{y}=\mathbf{S} x$.
Hint: Consider solving the equation $\mathbf{y}=\mathbf{S} x$, under the restriction that x is k-sparse. Show that there is a unique solution.
3. (2 points) Argue that the above result is nearly optimal in terms of how much x is compressed. In particular, prove that for any function $f: \mathbb{R}^{n} \rightarrow\{0,1\}^{o(k \log (n / k))}$, given $f(x)$ for some k sparse $x \in \mathbb{R}^{n}$, one cannot recover x uniquely, even under the assumption that all entries of x are either 0 or 1 .

5. Sparse Subspace Embedding (14 points) ${ }^{1}$

In this problem we will show how to construct very efficient subspace embeddings via Count Sketch random matries. In particular, let $\mathbf{S} \in \mathbb{R}^{m \times n}$ be a Count Sketch matrix where for each column we

[^0]independently pick a single entry uniformly at random and set it to 1 or -1 , each with probability $1 / 2$. All other entries are set to 0 .
You may use the following fact, proven on the midterm exam: for $m=O\left(\frac{1}{\epsilon^{2} \delta}\right)$, for any fixed $y \in \mathbb{R}^{n}$, $(1-\epsilon)\|y\|_{2}^{2} \leq\|\mathbf{S} y\|_{2}^{2} \leq(1+\epsilon)\|y\|_{2}^{2}$ with probability at least $1-\delta$.

1. (2 points) What is the runtime required to multiply \mathbf{S} by a matrix $A \in \mathbb{R}^{n \times d}$? How does this compare to the dense random sign sketching matrices studied in class?
2. (2 points) Using the ϵ-net + union bound proof approach from class, how large would we have to set m to ensure that \mathbf{S} is a subspace embedding for any $A \in \mathbb{R}^{n \times d}$ with probability at least $1-\delta$. How does this compare to what was shown in class for dense random sign matrices? Hint: The dependence on the failure probability for norm preservation for Count-Sketch is $1 / \delta$, not $\log (1 / \delta)$, and this cannot be improved significantly.
3. (2 points) Let $\mathbf{V} \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the column span of A. Consider the $d \times d$ matrix $\mathbf{M}=\mathbf{I}-V^{T} \mathbf{S}^{T} \mathbf{S} V$. Argue that if $\|\mathbf{M}\|_{2}=\max _{x \in \mathbb{R}^{k}} \frac{\left|x^{T} \mathbf{M} x\right|}{\|x\|_{2}^{2}} \leq \epsilon$ then \mathbf{S} is an ϵ-subspace embedding for A. Hint: Rewrite any $y \in \mathbb{R}^{n}$ in the column span of A as $V c$ for some coefficient vector c and expand out $\left|\|y\|_{2}^{2}-\|\mathbf{S} y\|_{2}^{2}\right|$.
4. (2 points) Prove that for $m=O\left(\frac{d^{4}}{\delta \epsilon^{2}}\right)$, with probability at least $1-\delta$, for every pair of columns v_{i}, v_{j} of V, we have $2-\frac{\epsilon}{d} \leq\left\|\mathbf{S} v_{i}-\mathbf{S} v_{j}\right\|_{2}^{2} \leq 2+\frac{\epsilon}{d}$, and further for every v_{i}, $1-\frac{\epsilon}{2 d} \leq\left\|\mathbf{S} v_{i}\right\|_{2}^{2} \leq 1+\frac{\epsilon}{2 d}$.
Hint: Apply the result form the midterm.
5. (2 points) Prove that if the bounds for part (4) hold, then for all pairs v_{i}, v_{j} with $i \neq j$, we have $\left|v_{i}^{T} \mathbf{S}^{T} \mathbf{S} v_{j}\right| \leq \frac{\epsilon}{d}$. Hint: Expand out $\left\|\mathbf{S} v_{i}-\mathbf{S} v_{j}\right\|_{2}^{2}$ as an inner product.
6. (2 points) Use part (5) to prove that if the bounds from part (4) hold, then $\|\mathbf{M}\|_{F} \leq \epsilon$ and in turn that $\|\mathbf{M}\|_{2} \leq \epsilon$.
7. (2 points) Conclude that a random Count Sketch matrix \mathbf{S} with $m=O\left(\frac{d^{4}}{\epsilon^{2} \delta}\right)$ is a subspace embedding for any $A \in \mathbb{R}^{n \times d}$ with probability at least $1-\delta$. How does this compare to the result on dense sketching matrices shown in class?

[^0]: ${ }^{1}$ Credit to Prof. Hung Le for giving me the idea for this problem.

