
COMPSCI 614: Problem Set 4

Due: 4/22 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

Hint: The following two inequalities may be helpful throughout the course: for any x > 0, (1 +
x)1/x ≤ e and (1− x)1/x ≤ 1/e.

1. Tighter Bounds for Trace Estimation (4 points)

Consider any matrix A ∈ Rn×n. Use the Hanson-Wright inequality to show that if x1, . . . ,xm ∈
{−1, 1}n are chosen to have independent and uniformly distributed ±1 entries, then for m =

O
(
log(1/δ)

ϵ2

)
, T̄ = 1

m

∑m
i=1 x

T
i Axi satisfies,

Pr
[
|T̄− tr(A)| > ϵ∥A∥F

]
≤ δ.

How does this compare to the bound proven in class using Chebyshev’s inequality?

2. A Naive Net Bound (4 points)

In class we showed via a volume argument that there is an ϵ-net over the unit ball S = {y ∈
Rd : ∥y∥2 = 1} containing

(
4
ϵ

)d
points. Consider instead using the following simple net: let

G = [−1,−1+ δ,−1+ 2δ, 0, δ, 2δ, . . . , 1− δ, 1] be a grid of spacing δ over [−1, 1] and let N = Gd be
the set of all d-dimensional vectors on the d-dimension grid defined by G.

How small must we set δ such that N is an ϵ-net for S. How large of a net does this yield? How
would using this construction instead of the one shown in class affect our final bounds on the
required dimension for subspace embedding?
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3. Matrix Concentration from Scratch (8 points)

Consider a random symmetric matrix M ∈ Rn×n where Mij = Mji is set independently to 1
with probability 1/2 and −1 with probability 1/2. Let ∥M∥2 = maxx:∥x∥=1 ∥Mx∥2 be the spectral
norm of M. Recall that ∥M∥2 is equal to the largest singular value of M, which equals the largest
magnitude of one of its eigenvalues.

1. (2 points) Give upper and lower bounds on ∥M∥2 that hold deterministically – i.e., for any
random choice of the entries of M. Hint: You may want to use ∥M∥F , and its relation to
the singular values to derive your bounds.

2. (2 points) Observe that you can also write ∥M∥2 = maxx:∥x∥=1 |xTMx|. Show that for any

x ∈ Rn with ∥x∥2 = 1, with probability ≥ 1− δ, |xTMx| ≤ c
√
log(1/δ) for some constant c.

Hint: Use Hoeffding’s inequality, which is a useful variant on the Bernstein inequality. For
independent random variables X1, . . . ,Xn, and scalars a1, . . . , an, b1, . . . , bn with Xi ∈ [ai, bi],

Pr [|
∑n

i=1Xi − E[
∑n

i=1Xi]| ≥ t] ≤ 2 exp
(

−2t2∑n
i=1(bi−ai)2

)
.

3. (4 points) Prove that with probability 1 − 1
nc1 , ∥M∥2 ≤ c2

√
n log n for some fixed constants

c1, c2. Hint: Use an ϵ-net for ϵ = 1/n and part (1).

4. Compressed Sensing From Subspace Embedding (6 points)

Given a vector x ∈ Rn and a random matrix S ∈ Rm×n, consider computing y = Sx. If m < n,
you can in general not determine x ∈ Rn from y ∈ Rm, since S is not an invertible map. Here, we
will argue that you can recover x, assuming that it is k-sparse for small enough k. I.e., that it has
at most k nonzero entries. This is known as compressed sensing or sparse recovery.

1. (2 points) Assume that S satisfies the distributional JL lemma/subspace embedding theorem

proven in class. I.e., for any A ∈ Rn×d, if m = O
(
d+log(1/δ)

ϵ2

)
, then with probability at least

1 − δ, S is an ϵ-subspace embedding for A. Prove that if m = O
(
k log(n/k)+log(1/δ)

ϵ2

)
, with

probability ≥ 1− δ, for all z ∈ Rn such that z is k-sparse, (1− ϵ)∥z∥2 ≤ ∥Sz∥2 ≤ (1+ ϵ)∥z∥2.
Hint: Show that with high probability, S is an ϵ-subspace embedding simultaneously for

(
n
k

)
different matrices.

2. (2 points) Use the above result, applied with k′ = 2k, to show that ifm = O (k log(n/k) + log(1/δ)),
and x ∈ Rn is k-sparse, then with probability ≥ 1−δ, x can be recovered exactly from y = Sx.

Hint: Consider solving the equation y = Sx, under the restriction that x is k-sparse. Show
that there is a unique solution.

3. (2 points) Argue that the above result is nearly optimal in terms of how much x is compressed.
In particular, prove that for any function f : Rn → {0, 1}o(k log(n/k)), given f(x) for some k-
sparse x ∈ Rn, one cannot recover x uniquely, even under the assumption that all entries of
x are either 0 or 1.

5. Sparse Subspace Embedding (14 points)1

In this problem we will show how to construct very efficient subspace embeddings via Count Sketch
random matries. In particular, let S ∈ Rm×n be a Count Sketch matrix where for each column we

1Credit to Prof. Hung Le for giving me the idea for this problem.
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independently pick a single entry uniformly at random and set it to 1 or −1, each with probability
1/2. All other entries are set to 0.

You may use the following fact, proven on the midterm exam: for m = O( 1
ϵ2δ

), for any fixed y ∈ Rn,
(1− ϵ)∥y∥22 ≤ ∥Sy∥22 ≤ (1 + ϵ)∥y∥22 with probability at least 1− δ.

1. (2 points) What is the runtime required to multiply S by a matrix A ∈ Rn×d? How does this
compare to the dense random sign sketching matrices studied in class?

2. (2 points) Using the ϵ-net + union bound proof approach from class, how large would we have
to set m to ensure that S is a subspace embedding for any A ∈ Rn×d with probability at least
1 − δ. How does this compare to what was shown in class for dense random sign matrices?
Hint: The dependence on the failure probability for norm preservation for Count-Sketch is
1/δ, not log(1/δ), and this cannot be improved significantly.

3. (2 points) Let V ∈ Rn×d be an orthonormal basis for the column span of A. Consider the

d × d matrix M = I − V TSTSV . Argue that if ∥M∥2 = maxx∈Rk
|xTMx|
∥x∥22

≤ ϵ then S is an

ϵ-subspace embedding for A. Hint: Rewrite any y ∈ Rn in the column span of A as V c for
some coefficient vector c and expand out |∥y∥22 − ∥Sy∥22|.

4. (2 points) Prove that for m = O
(

d4

δϵ2

)
, with probability at least 1 − δ, for every pair of

columns vi, vj of V , we have 2 − ϵ
d ≤ ∥Svi − Svj∥22 ≤ 2 + ϵ

d , and further for every vi,
1− ϵ

2d ≤ ∥Svi∥22 ≤ 1 + ϵ
2d .

Hint: Apply the result form the midterm.

5. (2 points) Prove that if the bounds for part (4) hold, then for all pairs vi, vj with i ̸= j, we
have |vTi STSvj | ≤ ϵ

d . Hint: Expand out ∥Svi − Svj∥22 as an inner product.

6. (2 points) Use part (5) to prove that if the bounds from part (4) hold, then ∥M∥F ≤ ϵ and
in turn that ∥M∥2 ≤ ϵ.

7. (2 points) Conclude that a random Count Sketch matrix S with m = O( d4

ϵ2δ
) is a subspace

embedding for any A ∈ Rn×d with probability at least 1 − δ. How does this compare to the
result on dense sketching matrices shown in class?

3


