
COMPSCI 614: Problem Set 3

Due: 3/26 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

Hint: The following two inequalities may be helpful throughout the course: for any x > 0, (1 +
x)1/x ≤ e and (1− x)1/x ≤ 1/e.

1. Error Bounds for Count Sketch (14 points)

In class we showed that Count Sketch implemented with sketch size O(log(1/δ)/ϵ2) returns an
estimate for any entry of a vector x ∈ Rn satisfying |x̃(i)− x(i)| ≤ ϵ∥x∥2 with probability ≥ 1− δ.

1. (6 points) For any x ∈ Rn and integer k ≤ n, let xk be its best k-sparse approximation – i.e.,
xk matches x on just its k largest magnitude entries and is 0 everywhere else. Prove that
Count Sketch implemented with sketch size O(log(1/δ)/ϵ2) returns an estimate for any entry
of a vector x ∈ Rn satisfying |x̃(i) − x(i)| ≤ ϵ∥x − x1/ϵ2∥2 with probability ≥ 1 − δ. Hint:
Consider a single repetition. Argue that with good probability, any index i is not hashed to
the same position as any of the 1/ϵ2 largest magnitude entries. Then compute an error bound
conditioned on this event.

2. (2 points) Describe a scenario in which you think that the error bound above will be much
better than the error bound shown in class.

3. (4 points) Prove that Count Sketch with sketch size O(log(1/δ)/ϵ) (note the 1/ϵ rather than
1/ϵ2) dependence) returns an estimate for any entry of a vector x ∈ Rn satisfying |x̃(i)−x(i)| ≤
ϵ∥x∥1 with probability ≥ 1 − δ, where ∥ · ∥1 is the ℓ1 norm. Hint: Replace Chebyshev’s
inequality by Markov’s inequality in the Count Sketch analysis.

4. (2 points) How does the bound in part (3) compare to the bound shown in class? That is,
when roughly do you expect one to be better than the other?
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2. One-Sided Importance Sampling for Matrix Multiplication (5 points)

1. (3 points) Suppose we run the approximate matrix multiplication algorithm described in class

with pi =
∥A:,i∥22
∥A∥2F

for all i ∈ {1, . . . , n}. I.e., our sampling probabilities only take into account

the row norms of A, and not the column norms of B. Prove that if we take t = O
(

1
δ·ϵ2

)
samples then with probability at least 1−δ, ∥AB−C∥F ≤ ϵ∥A∥F · ∥B∥F . I.e., up to constant
factors on the worst-case error bound, this approach matches the optimal approach analyzed
in class.

2. (2 points) Consider the following application: I have an orthonormal basis V ∈ Rn×k and I
would like to repeatedly apply the projection operation V T ∈ Rk×n to various input vectors
x ∈ Rn. What is the runtime required to compute V Tx for a single x ∈ Rn exactly? What
is the runtime required to approximate V Tx to error ϵ∥x∥2 with probability ≥ 1 − δ using
the sampling approach of part (1)? Note: You may assume that you precompute a sample
of V ’s rows that is repeatedly used for different x, without factoring this precomputation
step into your runtime. You may also use that the approximate matrix multiplication result
generalizes to rectangular matrix multiplication, via an identical proof.

3. Approximate Matrix Multiplication with Random Sketching (9 points)

1. (6 points) Let Π ∈ Rn×m be a random matrix with each entry set independently to 1/
√
m

with probability 1/2 and −1/
√
m with probability 1/2. Show that for any A,B ∈ Rn×n,

E[∥AΠΠTB −AB∥2F ] ≤
2∥A∥2F ∥B∥2F

m .

Hint: Write AΠΠTB = 1
m

∑m
i=1Aπiπ

T
i B, where π1, . . . ,πm ∈ Rn are independent random

vectors with each entry set independently to 1 with probability 1/2 and −1 with probability
1/2. Analyze the expectation and variance of the entries of Aπiπ

T
i B.

2. (1 point) Show that if m = O( 1
δϵ2

), then with probability at least 1− δ, ∥AΠΠTB−AB∥F ≤
ϵ∥A∥F ∥B∥F .

3. (2 points) How does this approximate matrix multiplication algorithm compare to the sam-
pling based algorithm presented in class in terms of runtime? How about in terms of suitability
to implementation in a data stream where the entries of A and B are updated over time and
you want to maintain a small compression of these matrices?

4. Importance Sampling with Machine Learned Advice (8 points)

Consider the following scenario: a group of scientists have set up a camera at a fish ladder that
automatically takes images when fish swim by. They would like to count the number of images
that contain a certain fish species – let’s say salmon. Assume there are n images and m of them
contain a salmon. The goal is to compute m. Since it is time consuming to hand-check every image
for the presence of a salmon, they would like to use random sampling to get a good estimate of m.
Throughout, we will think of m as being much smaller than n.

1. (2 points) Consider the following estimator: sample t images uniformly at random with
replacement from the set of images. Count how many contain a salmon and multiply this
count by n/t. Let m̃ be the returned estimator. Prove that E[m̃] = m and that Var[m̃] ≤ mn

t .

2. (6 points) Assume the scientists develop a machine learning model that is able to quickly
process all their images and detect the presence of salmon. The model is not exact, but is
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fairly accurate: it correctly detects 90% of images that contain salmon, while missing 10% of
these images. Overall, it predicts the presence of salmon in 5% of all images. Describe an
algorithm that uses this model to give an estimator m̃ for m that is correct in expectation,
requires just t hand image checks, and has variance at most .28·mn

t . That is, the estimator
reduces the variance by a factor of roughly three as compared to the naive uniform sampling
estimator. Hint: Apply importance sampling where the probability of sampling an image
depends on whether or not the ML model predicts that image contains a salmon or not. You
may assume that the accuracy statistics of the model are known and can be used in setting
these sampling probabilities.
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