
COMPSCI 614: Problem Set 1

Due: 2/21 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

Hint: The following two inequalities may be helpful in various places (and generally throughout
the course): for any x > 0, (1 + x)1/x ≤ e and (1− x)1/x ≤ 1/e.

1. Randomized Complexity Classes (12 points)

1. (2 points) Suppose I have a randomized algorithm A that is always correct on ‘NO’ instances
and succeeds with probability at least 1/2 on ‘YES’ instances. Describe and analyze algorithm
that makes a single call to A and succeeds with probability at least 2/3 on both ‘YES’ and
‘NO’ instances. Explain in a sentence or two why this shows that RP ⊆ BPP .

2. (2 points) Suppose I have a Las Vegas algorithm that solves a decision problem with expected
runtime T . For any δ > 0, describe and analyze a Monte-Carlo algorithm that correctly
answers the decision problem with probability at least 1 − δ and has worst case runtime
O(log(1/δ) ·T). Explain in a sentence or two why this result shows that ZPP ⊆ BPP . Hint:
It is possible to solve this problem justing using Markov’s inequality and basic probability
computations.

3. (2 points) Suppose I have a Monte-Carlo algorithm that solves a decision problem with worst
case runtime T and at least 2/3 probability of correctness. For any δ > 0, describe and analyze
a Monte-Carlo algorithm that correctly answers the decision problem with probability at least
1− δ and has worst case runtime O(log(1/δ) · T).

4. (2 points) Consider the set of problems solvable by a randomized algorithm that runs in
polynomial time and outputs correctly with probability at least 3/4 on ‘YES’ instances, and
probability at least 1/4 on ‘NO’ instances. Is this an interesting complexity class? Is it
equivalent to any of the classes discussed in Lecture 1? What about if the algorithm must be
correct with probability 4/5 on ‘YES’ instances and probability 1/4 on ‘NO’ instances?

1

5. (2 points) Consider the set of problems solvable by a randomized algorithm that runs in
polynomial time and is correct with probability at least 1/2 + 1/n on any input instance. Is
this an interesting complexity class? Is it equivalent to any of the classes discussed in Lecture
1?

6. (2 points) Prove that 3-SAT is in PP, and thus that NP ⊆ PP . Note: You can easily find
the solution to this question online. Try to come up with the answer yourself.

2. Polynomial Identity Testing (6 points)

1. (2 points) In class we proved the Schwartz-Zippel Lemma: if one picks (z1, . . . , zn) uniformly
at random from Sn (i.e., from the set of n-length vectors with entries lying in the set S) then
for any n-variable non-zero polynomial p with degree d, Pr[p(z1, . . . , zn) = 0] ≤ d

|S| . Describe,

for all values of d and n, an example where this bound is tight. I.e., where Pr[p(z1, . . . , zn) =
0] = d

|S| .

2. (4 points) Say I give you three matrices A,B,C ∈ Rn×n and I want you to determine if
AB = C. You can do this in O(n3) time deterministically (or actually O(nω) time for
ω ≈ 2.37) by just computing AB and checking equality with C. But you can do it much
faster with a randomized algorithm: Let x ∈ Rn be a random vector. Check if ABx = Cx.
If yes, return that AB = C. Otherwise return that AB ̸= C.

(a) (1 point) What is the runtime of this algorithm? Note: Assume that basic arithmetic
operations like addition and multiplication of two numbers take O(1) time.

(b) (1 point) What is the probability that the algorithm is correct when AB = C?

(c) (2 points) Prove that if x has entries picked independently and uniformly at random
from the integers {1, 2, . . . , s}, then this algorithm is correct with probability at least
1 − 1/s in the case that AB ̸= C. Hint: View ABx − Cx as a polynomial in x and
apply the Schwartz-Zippel Lemma.

3. Finding Random Primes (4 points)

A common application of randomized primality testing algorithms is in finding large random primes
for use in cryptographic schemes, such as RSA. Suppose you have a Monte-Carlo primality testing
algorithm that, given an integer input x, outputs ‘yes’ or ‘no’. If x is prime, the algorithm always
outputs ‘yes’. If x is composite, the algorithm outputs ‘no’ with probability at least 1/2.

For any δ ≥ 0, describe an algorithm that makes O(log(n) · log(1/δ)) calls to this tester and
outputs x such that, with probability at least 1− δ, x is a uniformly random prime in {1, . . . , n}.
Hint 1: Let π(n) be the prime counting function: the number of prime numbers less than or equal
to any integer n. You may use the fact that for any n ≥ 17, n

logn ≤ π(n). This fact is closely
related to the prime number theorem (PNT).

Hint 2: It might be easier to first shoot for O(log(n) · log(1/δ) · log(log n/δ)) calls or something
like this and then figure out how to tighten your analysis. You will get partial credit for any weaker
bound that just loses log factors in n and 1/δ.

To think about: Why in cryptographic applications do we want a random prime in {1, . . . , n}
rather than say, any prime at least as big as n/2?

2

4. Tighter Bound for Coupon Collecting (3 points)

Analyze the coupon collecting problem by considering a union bound over the events E1, . . . , En

where Ei is the event that you do not collect coupon i in T rounds. Prove that for T = cn lnn, with
probability at least 1− 1

nc−O(1) you collect all coupons within T rounds. How does this compare to
the bound that is given by the variance analysis + Chebyshev’s inequality shown in class?

5. Randomized Routing (4 points + 3 bonus points)

Consider the following simplified model of a routing problem under communication constraints:
we have n nodes in a fully connected network. Each node has n messages that it would like to
deliver to n (not necessarily unique) destinations. Also, for simplicity, we assume that each node is
the intended recipient of exactly n messages. In each round, a node can send at most one message
along each connection in the network. Assume that the message contains the id of its final intended
recipient. Naively, sending these messages could take n rounds, if e.g., some node v needs to send
n messages to some other node u.

Describe and analyze a randomized scheme that sends all messages in O(log n) rounds with
high probability, i.e., with probability at least 1− 1/nc for a large constant c.

Hint: Have each node initially send each of its n messages to a random recipient, who will then
forward the message to its final destination.

3 Bonus Points (Quite Challenging): Can you achieve O(log log n) rounds?

3

