
COMPSCI 614: Final Review

General Info: The final will be held Tuesday May 14th from 10:30am-12:30pm in LGRC
A203. The test will be closed book, with no cheatsheets or calculators allowed. You must show
your work/derive any answers as part of the solutions to receive full credit (and partial credit
if you make a mistake).

Format: The format will be very similar to the midterm: the test will contain 4-5 questions. The
first will be a mix of True/False or Always/Sometimes/Never style questions. The rest will be short
answer style questions, like homework questions, but significantly less involved. The exam will be
similar in length to the midterm as well, although you will have 2 hours, rather than 1 hour 15
minutes to complete it.

Studying Tips:

• Do as many practice problems as you can – including from the posted practice exam, from this
review sheet, the books, the quizzes, the homeworks, and the ‘Exercise’ or ‘Think-Pair-Share’
questions given on the slides. For quizzes/homeworks/in class questions – try to re-solve
without looking at the answer key or a solution given in the next slide. Then check to see
how you did.

• For all practice questions, try to solve (and write down) a solution first without resources and
somewhat quickly, as you would on the exam. Then go back and more slowly work through
the problem, see if you solution is correct, etc.

• We encourage you to post on Piazza to check answers/discuss approaches.

Pre-Midterm and Last Class Material:

The final will not cover material from the last class on the probabilistic method. It will also
not focus on material from before the midterm (Lectures 1-12 up to stochastic trace estimation).
However, you should be able to use the tools developed in the first half of the course. E.g.,

• Basic probability calculations, applications of linearity of expectation, linearity of variance,
concentration bounds, and union bound.

• Do not need to memorize any concentration bounds outside Markov’s and Chebyshev’s.

• Idea of proving communication lower bounds and other lower bounds via pigeonhole principle
style arguments.

• Basics of randomized linear algebra – ability to work with randomly sampled matrices and
vectors.
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1 Concepts to Study

Randomized Numerical Linear Algebra

• Subspace embedding definition.

• ϵ-net definition, and motivation for why they are used to prove subspace embedding from the
Johnson-Lindenstrauss lemma. Should understand high level idea of this proof, but don’t
need to memorize details.

• The Johnson-Lindenstrauss lemma statement and ability to apply Hanson-Wright inequality.
Do not need to memorize Hanson-Wright.

• Application of subspace embeddings to approximate regression

• Definition of leverage scores and high level idea of subspace embedding via leverage score
sampling and matrix Chernoff bound. Do not need to memorize matrix Chernoff bound.

• Loewner ordering notation. I.e., for M,N ∈ Rd×d, M ⪯ N if for all x ∈ Rd, xTMx ≤ xTNx.

• Variational characterization of the leverage scores.

• Spectral sparsifier definition and its connection to cut preservation and subspace embedding.

• Equivalence between leverage scores of the vertex-edge incidence matrix and effective resis-
tances. Don’t need to know the proof (we didn’t cover it).

Markov Chains

• Definition of a Markov chain and view in terms of state graph and transition matrix.

• High level idea behind Markov chain based 2-SAT and 3-SAT algorithms. Don’t need to
memorize the analysis but should understand the tools used. E.g., solving for the expected
number of steps to reach a satisfying assignment via a linear recurrence.

• Gambler’s ruin set up, analysis, and conclusion.

• Definition of a stationary distribution, and conditions for having a stationary distribution
and for that distribution being unique (fundamental theorem of Markov chains).

• Related to the above, irreducibility and aperiodicity. You should be able to recognize and
prove when a Markov chain is/is not irreducible/aperiodic.

• Fact that symmetric Markov chains have uniform stationary distributions.

• Definition of total variation (TV) distance, and mixing time.

• Min/Max view of the TV distance (Kontorovich-Rubinstein duality) and implication for
bounding mixing time via coupling.

• Ability to construct a coupling for a Markov chain and analyze its coupling time.

• Metropolis-hastings algorithm – should understand why it achieves the desired stationary
distribution, proportional to the density p(·).
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• Ability to design a Markov chain that converges to a given distribution (like the independent
set examples using a symmetric Markov chain and Metropolis-Hastings covered in class).

• Definition of a reversible Markov chain and the implication that P has real eigenvalues in
this case.

• Do not need to know counting-sampling reductions in detail.

Other

• High level idea of what sort of problems convex relaxation + randomized rounding would be
applied to and how to analyze expected solution quality for randomized rounding.

2 Practice Questions

1. Subspace Embeddings

1. Give an upper bound on required the size of an ϵ net over the d-dimensional cube [−1, 1]d.
Use as volume argument to show that your upper bound is tight up to constant factors.

2. Consider two matrices A,B ∈ Rn×d such that A = BC for some invertible C ∈ Rd×d. If S is
an ϵ-subspace embedding for A, then S is also an ϵ-subspace embedding for B. ALWAYS
SOMETIMES NEVER.

3. True of False: For any matrix A ∈ Rd×d, 2A ⪰ A. If true, why? If false, what is one
assumption you can make on A so that it is true?

4. True or False: For any matrix A ∈ Rn×d, there is some matrix S ∈ Rd×n such that, for all
x ∈ Rd, ∥SAx∥2 = ∥Ax∥2.

5. Prove directly, without using an ϵ-net that if S ∈ Rm×n is a random ±1 matrix with m =

O
(
d+log(1/δ)

ϵ2

)
, and A ∈ Rn×d is any matrix, then with probability ≥ 1− δ, for all x ∈ {0, 1}d,

(1− ϵ)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1 + ϵ)∥Ax∥2.

2. Leverage Scores and Spectral Sparsifiers:

1. There exists a spectral sparsifier of a connected graph G with < n − 1 edges. ALWAYS
SOMETIMES NEVER

2. For a matrix A ∈ Rn×d with rows a1, . . . , an ∈ Rd, the leverage score of the ith row τi, satsifies
τi = ∥ai∥22 ALWAYS SOMETIMES NEVER.

3. Consider two matrices A,B ∈ Rn×d such that A = BC for some invertible C ∈ Rd×d. How
do the leverage scores of A compare to those of B?

4. Let G be the complete graph on n-nodes, and let G̃ be a 1/2-spectral sparsifier of G. Assume
that G̃ has O(n log n) edges. Argue that G̃ has at least one edge in it with weight at least
Ω(n/ log n). Hint: Think about how G̃ preserves cuts in G.

3. Markov Chains:

1. Exercises 7.3, 7.6, 7.7, 7.11, 7.20, 7.21 from Mitzenmacher, Upfal.
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2. Is a random walk on a connected, undirected graph always irreducible? Is it always aperiodic?
What about on a connected undirected graph where one of the nodes has a self loop?

3. Let P be the uniform distribution on the integers {1, 2, . . . , 100}. Let Q be the uniform
distribution on the even integers {2, 4, 6, ..., 100}. What is ∥P −Q∥TV ?

4. Prove formally the claim made in class that if qt,i is the state distribution of a Markov chain
after taking t steps starting from state i, and π is a stationary distribution of the chain, then
∥qt+1,i − π∥TV ≤ ∥qt,i − π∥TV . Does this fact require that the Markov chain is aperiodic and
irreducible? Does it require the Markov chain to have a unique stationary distribution?

5. Consider the ‘Glauber dynamics’ for sampling an independent set: to generate set Xi+1 from
set Xi, sample a random vertex v from the graph. Let X′ = Xi ∪ {v} with probability
1/2 and X′ = Xi \ {v} with probability 1/2. If X′ is an independent set, let Xi+1 = X′.
Else, let Xi+1 = Xi. Is this Markov chain irreducible and aperiodic? What is its stationary
distribution?

6. Describe a Markov chain whose stationary distribution is the uniform distribution over valid
∆-colorings of a graph. I.e., assignments of each vertex to one of ∆ colors, such that no two
vertices with the same color are connected by an edge. Assume that there is at least one valid
∆-coloring of the graph.

7. Is the Markov chain you found above irreducible and aperiodic?

8. For a valid coloring X of a graph G, let c(X) be the number of unique colors used in that
coloring. Observe that c(X) ≤ n where n is the number of nodes and c(X) ≥ χ(G), where
χ(G) is the chromatic number of G. Describe a Markov chain, which is both irreducible
and aperiodic, whose stationary distribution samples a valid coloring X with probability

π(X) = λc(X)∑
valid colorings Y λc(Y ) , for some parameter λ.

9. Consider an irreducible, aperiodic Markov chain, where all states transition to a single ‘home
state’ h with probability 1/c. I.e., Pi,h = c for all i. Give an upper bound on the ϵ-mixing
time, τ(ϵ) for this chain.

10. Describe a Markov chain for which any distribution π ∈ [0, 1]m is a stationary distribution.
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