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Summary

Last Class:

• Finish up exponential concentration bounds. Application to max
load in hashing/load balancing.

• Bloom filters for storing a set with a small false positive rate.

This Class:

• Bloom Filter Analysis.

• Start on streaming algorithms

• The distinct items problem via random hashing.
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Quiz

• Average time spent on homework: 18-20 hours.

• 18 people worked alone, 103 worked in groups. Mix of
approaches to splitting up work in groups.
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Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.
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Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

5

[



Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads. 6
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More Applications

• Database Joins: Quickly eliminate most keys in one column that
don’t correspond to keys in another.

• Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

• Spam/Fraud Detection:
• Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

• Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

• Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).
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Bloom Filter Quiz Question
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Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k).

How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) $= i ∩ . . . ∩ hk(xk) $= i

∩ h1(x2) $= i . . . ∩ hk(x2) $= i ∩ . . .
)

= Pr
(
h1(x1) $= i)× . . .× Pr

(
hk(x1) $= i)× Pr

(
h1(x2) $= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn
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Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10



Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10

f i n e "



Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10

¥¥b"
- f-e-'4)

k -



Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10

= -



Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k

Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10

0



Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect!

Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10

punching:Ln AWAD:k¥+4"
# 11%1=2,m : 2

- c¥#÷[ # 2
Achim AlhilD h ,(w),hiw)..hidw)

-

:*.in#..E......,÷÷÷÷¥÷÷Co



Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 10

a s



Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t ≤ m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(A[h1(w)] = . . . = A[hk(w)] = 1)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1).

I.e., the events A[h1(w)] = 1,…, A[hk(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

• Conditioned on this event, for any j, since hj is a fully random
hash function, Pr(A[hj(w)] = 1) = 1− t

m .

• Thus conditioned on this event, the false positive rate is(
1− t

m
)k.

• It remains to show that t
m ≈ e− kn

m with high probability. We
already have that E[ t

m ] =
1
m
∑m

i=1 Pr(A[i] = 0) ≈ e− kn
m .
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Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O

(
e−

kn
m

)
with high probability.

Can apply Theorem 2 of:
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf
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False Positive Rate

False Positive Rate: with m bits of storage, k hash functions, and n

items inserted δ ≈
(
1− e−kn

m

)k
.

How should we set k to minimize the
FPR given a fixed amount of space m?

• Can differentiate to show optimal number of hashes is
k = ln 2 · m

n .

• Balances filling up the array vs. having enough hashes so that
even when the array is pretty full, a new item is unlikely to yield
a false positive.
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False Positive Rate

False Positive Rate: with m bits of storage, k hash functions, and n

items inserted δ ≈
(
1− e−kn

m

)k
.

• Say we have 100 million users, each who have rated 10 movies.

• n = 109 = n (user,movie) pairs with non-empty ratings.

• Allocate m = 8n = 8× 109 bits for a Bloom filter (1 GB).

• Set k = ln 2 · m
n = 5.54 ≈ 6.

• False positive rate is ≈
(
1− e−k· n

m
)k ≈ 1

2k ≈ 1
25.54 = .021.
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Bloom Filter Note

An observation about Bloom filter space complexity:

False Positive Rate: δ ≈
(
1− e− kn

m

)k
.

For an m-bit bloom filter holding n items, optimal number of hash
functions k is: k = ln 2 · m

n .

Think Pair Share: If we want a false positive rate < 1
2 how big does m

need to be in comparison to n?

m = O(log n), m = O(
√
n), m = O(n), m = O(n2)?

If m = n
ln 2 , optimal k = 1, and failure rate is:

δ =
(
1− e−

n/ ln 2
n

)1
=

(
1− 1

2

)1

=
1
2
.

I.e., storing n items in a bloom filter requires O(n) space. So what’s
the point? Truly O(n) bits, rather than O(n · item size).
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Questions on Bloom Filters?
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