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Logistics

• Problem Set 1 is due tomorrow at 11:59pm in Gradescope.
Separate submissions for core-competency problems and
challenge problems.

• Quiz 3 is due Monday at 8pm.
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Last Time

Last Class:

• Higher moment bounds and exponential concentration bounds

• Bernstein inequality

This Class:

• Connection between exponential concentration bounds and the
central limit theorem.

• The Chernoff bound.

• Bloom filters: random hashing to maintain a large set in small
space.
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables X1, . . . , Xn falling in [-1,1]. Let µ = E[

∑
Xi],

σ2 = Var[
∑

Xi], and s ≤ σ. Then:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ sσ
)

≤ 2 exp
(
−s2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .
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Gaussian Tails

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

Exercise: Using this can show that for X ∼ N (0,σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ 2e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

• Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.
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The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1}. Let µ =

E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.
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Return to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?
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Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1

= µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].
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Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)

≤ exp(−18 logm) ≤ 2
m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr

( m⋃

i=1

(Si ≥ 20 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.
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Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).
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