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- Problem Set 1is due tomorrow at 11:59pm in Gradescope.
Separate submissions for core-competency problems and
challenge problems.

- Quiz 3 is due Monday at 8pm.



Last Class:

- Higher moment bounds and exponential concentration bounds
- Bernstein inequality p Se-mpL C”“\“’P% b
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- Connection b en exponential concentration bounds and the
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- The Chernoff bound. Lo AS fo o dormdl df

- Bloom filters: random hashing to maintain a large set in small
space.




Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],

o? =Var[YX],ands < o. Then: —
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dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
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Can plot this bound for different s:
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Looks a lot like a Gaussian (normal) distribution.

N(0,0?%) has density p(so) = ﬁ -.e*/% 4



N(0,0?) has density p(so) =
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Exercise: Using this can show that for X ~ A/(0,0?): forany s > 0,
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Exercise: Using this can show that for X ~ A/(0,0?): forany s > 0,
s2
Pr(IX| >s-0) <2e77.

Essentially the same bound that Bernstein’s inequality gives!
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N(0,0?) has density p(so) = =— - e~

Exercise: Using this can show that for X ~ A(0, o?): for any s > 0,
s2
Pr(|X| >s-0) <2e7.
Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.




Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.
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Means

| Why is the Gaussian distribution is so important in statistics,
cience, ML, etc.?

- Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.
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A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

n —_— - ———
E[> ;_,X]. Forany 6 >0

pr<_

n
ZX/' —
i=1

_—

> 5u> < 2exp (— 62H5> QP (/J

(l\)

)

g e — A

$=e)




The Chernoff Bound
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A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =
E[>",X]. Forany s >0
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As § gets larger and larger, the bound falls of exponentially fast.

u(ﬁé gxl - E}i



Return to Random Hashing
Hash Table

128-bit IP addresses

172.16.256.1
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192.168.134

h( 16582616 ) =1590

16.58.26.164

We hash m values x;, ..., X, using a random hash function into

a table with n = m entries.
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Return to Random Hashing
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We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj e [m] and i € [m], Pr(h(x;) = i) = - and hash
values are chosen independently.




Return to Random Hashing

128-bit IP addresses Hash Table
-1
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h( 16582616 ) =1590

172.16.256.1
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192.168.134

16.58.26.164.

We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [m], Pr(h(x)) = i) = -~ and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?



Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S;; be 1if ;
is hashed into bucket i (h(x;) = i) and 0 otherwige. ]
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m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.
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m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.
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Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise. ]
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By the Chernoff Bound: for any § > 0, )
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[ m: total number of items hashed and size of hash table. xq, ..., Xm: the items.

h: random hash function mapping xi, .. ., Xm — [m].




Maximum Load in Randomized Hashing
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m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing
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Set § = 20log m. Gives:

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing
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Set § = 20log m. Gives:

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing
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m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.




Maximum Load in Randomized Hashing
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Set § = 20log m. Gives:

Pr(Si > 20logm +1) < 2exp ( ) < exp(—18logm) <
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hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.
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Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.
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Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).
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Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).

+| Using Chebyshev’s inequality could only show the
maximum load is bounded by O(v/m) with good
probability (good exercise).
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Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).

- Using Chebyshev's inequality could only show the
maximum load is bounded by O(v/m) with good
probability (good exercise).

- The Chebyshev bound holds even with a pairwise
. . /_\
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a R-wise independent
. \'\/—N
hash function for k = O(log m).
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