
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 4

1

Logistics

• Problem Set 1 due next Friday 9/22, at 11:59pm.
• Second quiz will be released today after class, due
Monday 8:00pm.

2

• Change t o challenge problem grading.
✓ t = 3 J s 2 J-=L

Full score: 15 points

Last Time

Last Class:

• 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) expected space usage.

• Practical random hash functions: 2-universal and pairwise
independent hashing.

This Time:

• Hashing for load balancing in distributed systems. Motivating:
• Stronger concentration inequalities: Chebyshev’s
inequality, exponential tail bounds, and their connections
to the law of large numbers and central limit theorem.

• The union bound to bound the probability that one of
multiple possible correlated events happens.

• Some of the pset questions use Chebyshev’s inequality. After
today you will know enough to solve everything on the pset.

3

iEL÷§¥I
,

" ' " '" '" ' " ' .

Last Time

Last Class:

• 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) expected space usage.

• Practical random hash functions: 2-universal and pairwise
independent hashing.

This Time:

• Hashing for load balancing in distributed systems. Motivating:
• Stronger concentration inequalities: Chebyshev’s
inequality, exponential tail bounds, and their connections
to the law of large numbers and central limit theorem.

• The union bound to bound the probability that one of
multiple possible correlated events happens.

• Some of the pset questions use Chebyshev’s inequality. After
today you will know enough to solve everything on the pset.

3

ME
- -

[

Efficiently Computable Hash Functions

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n
.

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = 1
n2 .

4

-

I:÷÷¥÷I¥
÷÷÷E¥÷.

Another Application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

• Often assignment is done via a random hash function. Why?

5

Another Application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

• Often assignment is done via a random hash function. Why?

5

• o • o a o

- w h a t i f servers s o down consiteny
- m o r e secure.

Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =

n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

6

mr;=#rawest assigned t o s e r v e i .

I

Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =
n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

6

- - - 4 -
I

Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =
n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

6

Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =
n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

6

±

Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =
n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

6

-

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])

7

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])

7

- -

± * =

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])

7

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])

7

-

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) = Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])

7

- -

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) = Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])

7

Y : X - E x

-
-

P r(ix.Extst)s lEKx¥¥s Var&D

Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

.

(by plugging in the random variable X− E[X])

7

-

E l i

=

Chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from it’s
mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2
.

X: any random variable, t, s: any fixed numbers.

8

Chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from it’s
mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2
.

X: any random variable, t, s: any fixed numbers.

8

Chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from it’s
mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2
.

X: any random variable, t, s: any fixed numbers.

8

:
- - I

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]

=
1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

- . .

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]

=
1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

-

-

FIE):µ ='s§,exist.n .m s
m

P r as-u l> t) : P rl ls.Est>t)

v a r (s)

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]

=
1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

-

-

= La,§V a r(xi)

='s.§..62
= µ

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi]

=
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2

=
σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

- .

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− E[S]| ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

i n

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− µ| ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− µ| ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

* G)s u

6£'s.o, £95him.:{so
- - -

§¥hi

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]
=

1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− µ| ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.

9

-

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Ri =
n∑

j=1

Ri,j

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

- Eris,}

-

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Var[Ri] =
n∑

j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

-

-

KIRI;):& Elliff:#Ri;:#
4

→ up's vw(Ri;) -IEEE,Yf$lRi;D'
o a w .

= ¥-¥25 &

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Var[Ri] =
n∑

j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

-

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Var[Ri] =
n∑

j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Var[Ri] =
n∑

j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Var[Ri] =
n∑

j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k

=⇒ Var[Ri] ≤
n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

÷

Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Var[Ri] =
n∑

j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

10

o

Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)

≤ n/k
n2/k2

=
k
n
.

• Overload probability is extremely small when k (n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

11

-

-

Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)

≤ n/k
n2/k2

=
k
n
.

• Overload probability is extremely small when k (n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

11

Er i :&
A B

÷ - -

J
i f R i32¥ then

1k¥#BB tri-IERil '' I

Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k

n2/k2

=
k
n
.

• Overload probability is extremely small when k (n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

11

s Varley)
(n1142

⇐ E

Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k

n2/k2
=

k
n
.

• Overload probability is extremely small when k (n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

11

Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k

n2/k2
=

k
n
.

• Overload probability is extremely small when k (n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

11

← I
2

Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k

n2/k2
=

k
n
.

• Overload probability is extremely small when k (n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

11

E R , = n K i n , O

=
5pH'd# i i i . &i;),

-
-

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)

= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

-

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)

= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

÷

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

I - - -

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

([
R1 ≥

2n
k

]
or
[
R2 ≥

2n
k

]
or . . . or

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

-

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

-

Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .

12

PlanB)spot)PlB)

:

The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ..., Ak are all disjoint.

13

-

The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ..., Ak are all disjoint.

13

- .

3 dice A i (214,63

A ,= dice
h i t s6

A,:{a
h i t 6 § A z = (f)

P(ANA zvps):Pr(at leasto n e hits6)
s t
I

The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight?

When A1, ..., Ak are all disjoint.

13

The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ..., Ak are all disjoint.

13

The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ..., Ak are all disjoint.

13

a a ¥
p ,y a '

d '°""
A ,= dice1 rollsI

÷÷÷E
÷¥÷,

n±÷⇒
36 atoms

Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n

=
k2

n

(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k . 14

=

Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n

=
k2

n

(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k . 14

-

Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n

=
k2

n

(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k . 14

=
a

Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n
=

k2

n
(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k . 14

Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

(k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n
=

k2

n
(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k . 14

-

