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- Problem Set 1 due next Friday 9/22, at 11:59pm.
- Second quiz will be released today after class, due

Monday 8:00pm.
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Last Class:

2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) expected space usage.

- Practical random hash functions: 2-universal and pairwise
independent hashing. Lo —ci 65 an Pf’b ‘
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Last Class:

- 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) expected space usage.

- Practical random hash functions: 2-universal and pairwise
independent hashing.

This Time:

- Hashing for load balancing in distributed systems. Motivating:
\Lp\ - Stronger concentration inequalities: Chebyshev's
&\\% inequality, exponential tail bounds, and their connections
to the law of large numbers and central limit theorem.
- The union bound to bound the probability that one of
multiple possible correlated events happens.

Some of the pset questions use Chebyshev's inequality. After
today you will know enough to solve everything on the pset.



Efficiently Computable Hash Functions

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

\mmw—mwng;
/—\

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Sy Prln(e) = inh(y) =] = .
\m(D > aadln)
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Another Application

Randomized Load Balancing:

l Client Requests
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Another Application

Randomized Load Balancing:
l Client Requests
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Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often a55|gnment is done via a random hash func‘uon Why?
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Weakness of Markov’s

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Weakness of Markov’s

E[R] = ZE[Hrequest/ assigned to i] = Z Pr[j assigned to i] = —

s A k|
K

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Weakness of Markov’s

n n
. LN
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R
j=1 j=1
If we provision each server be able to handle twice the
expected load, what is the probability that a server is

overloaded?

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Weakness of Markov’s

n n
. LN
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R
j=1 j=1
If we provision each server be able to handle twice the
expected load, what is the probability that a server is

overloaded?

Applying Markov’s Inequality

ot A
PriR > 2E[R]] < k) _ ]

2E[R] 2’

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Weakness of Markov’s

n n
. LN
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R
j=1 j=1
If we provision each server be able to handle twice the
expected load, what is the probability that a server is

overloaded?

Applying Markov’s Inequality
ER] 1

2E[R] 2’
Not great..half the servers may be overloaded™

Pr[R; = 2E[R]] <

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.



Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
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Pr(|X| > t) = Pr(X?> > t%).
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Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:
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much more powerful.

For any random variable X and any value t > 0:
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X? is a nonnegative random variable. So can apply Markov's
inequality:
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much more powerful.
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Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:

Chebyshev’s inequality: \l) = K- EX

Pr(&‘) = Pr(X> >t} <
Po(peml>t) < B[ P = )
_{.

E[X2]




Chebyshev's inequality

With a very simple twist, Markov's inequality can be made
much more powerful.
lof <)

For any random variable X and any value t > 0: 1L El
o~

Pr(|X| > t) = Pr(X*> > t%).
/_—\
X? is a nonnegative random variable. So can apply Markov’s
inequality:
Chebyshev’s inequality:

Var[X]

Pr(X — BX]| > 1) < ~ 5=

(by plugging in the random variable X — E[X])



Chebyshev's inequality

Var[X]
t2

Pr(X —E[X]| = t) <

X: any random variable, t,s: any fixed numbers.




Chebyshev's inequality

Var[X
Pr(X ~ EIX| > 1) < VP
What is the probability that X falls s standard deviations from it's

mean?

Standard Deviations

X: any random variable, t,s: any fixed numbers.




Chebyshev's inequality

Pr(X — £ > 1) < 2

What is the probability that X falls s standard deviations from it's
mean?

Standard Deviations

Pr(IX —E[X]| > s +/Var[X]) < VarX] _ L

— s?-Mar[X]  s?

X: any random variable, t,s: any fixed numbers.




Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X4, ..., X, with mean x and variance .
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the

true mean p? =
Var[S] = Var 1ix-] = \ = ;
n — 1 (\\9\' i \/'\/'(X|>
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

Var[S] = Var

1 < 1 <
n;xi] :W;Var[x,-]



Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

Var[S] = Var

1 < 1 < 1
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

Var[S] = Var
=

1< 1 <& 1
nzxi] :ﬁZVar[X,-]:ﬁW%f:F.
i=1 i=1



Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
2

1< 1 <& 1 o
nzxi] :ﬁZVar[X,-]:ﬁW%f:F.
i=1 i=1

By Chebyshev's Inequality: for any fixed value ¢ > 0,
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Var[S] = Var




Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
2

1< 1 <& 1 o
nzxi] :ﬁZVar[X,-]:ﬁW%f:F.
i=1 i=1

By Chebyshev's Inequality: for any fixed value ¢ > 0,

Var[S]  o®
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Var[S] = Var

Pr(S — | > €) <



Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = + Z, 1 X; approximate the

true mean p? E[Sj ~ Ao
n
ani] - WZ::Var[X,-] - %~n~02 - %

By Chebyshev's Inequality: for any fixed value e > 0

Var[S] = Var
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Var|S \\m D
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Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
2

1< 1 <& 1 o
nzxi] :ﬁZVar[X,-]:ﬁ-r%f:F.
i=1 i=1

By Chebyshev's Inequality: for any fixed value ¢ > 0,
Var[S]  o?
< J—

- e ne2’

Var[S] = Var

Pr([S—ul =€)

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

- Cannot show from vanilla Markov's inequality.



Load Balancing Variance

We can write the number of requests assigned to server i, R; as: H:R?:Q
&

n
Ri=> Ry
=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

Var[R ZVar

(linearity of variance)
=

where R;; is Tif request j is assigned to server i and 0 otherwise
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n: total number of requests, k: number of servers randomly assigned requests
R;: number of requests assigned to server i.




Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

n
Var[R]] = > " Var[R; ] (linearity of variance)
j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

n
Var[R]] = > " Var[R; ] (linearity of variance)
j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

— Pr(Ri; =1)- (1= E[R;])’ +Pr(R;; = 0) - (0 — E[R;}])’

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

n
Var[R]] = > " Var[R; ] (linearity of variance)
j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

o

f(Riy=1)- (1= E[R;,])’ +Pr(R;; = 0)- (0 —E[R;)])’

(2 (=005

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




We can write the number of requests assigned to server i, R; as:

n

Var[Ri] = ZVar[R,-J] (linearity of variance)
é

where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

o

f(Riy=1)- (1= E[R;,])’ +Pr(R;; = 0)- (0 —E[R;)])’
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n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

Load Balancing Variance



Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

n
Var[R]] = > " Var[R; ] (linearity of variance)
j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

o

f(Riy=1)- (1= E[R;,])’ +Pr(R;; = 0)- (0 —E[R;)])’
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n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[R] < I —
D

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.

AN i)
Applying Chebyshev’s: k > &

2n n
Pr (R, > ,?) <Pr(IR B[R] > 7)
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n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Jl<n .

Var[R,] <% ¢ \/Mf(v-\>

Applying Chebyshev's: T (nt

2n n n/k )C
Pr (R,- > k) <Pr <|R,-—JE[R,-]| > E) < R = F

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

1



Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.

Applying Chebyshev's:

2n n n/k k
Pr (R,- > k) <Pr(R—ER] > ) < =

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.

Applying Chebyshev's:

2n n n/k Rk )_
Pr(R= ) <pe(R-BRI > §) < i =7 << -

- Overload probability is extremely small when k < n!

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and O

Var[Ri] < 7. &_—R‘ N | TN

I
@)

Applying Chebyshev's:
PrR > 3 ) <Pr(R-ERI > §) < =1, 2
) AR
¢ (= — T NI
- Overload probability is extremely small when k & nl ’\/,Do

- Might seem counterintuitive - bound gets worse as k grows.

When kis large, the number of requests each server sees in

expectation is very small so the law of lWesn’t

‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

1




Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[Rj] = %” l.e., that some server is overloaded if we give
each 2! capacity?

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[Rj] = %” l.e., that some server is overloaded if we give
each 2! capacity?

Pr <max(R,-) > 2n>
=1 R
K

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[Rj] = %” l.e.,, that some server is overloaded if we give
each 2! capacity?

o (mar) = 2 =pe (= 2] = 2] s [ 1))

/q—_<:__,,4:‘

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[Rj] = %” l.e., that some server is overloaded if we give
each 2! capacity?

2n 2n 2n 2n
Pr <m:aX(R") > i?) = Pr ({R1 > k} or [Rz > fe} or ... or {Rk > /?D

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2 capacity?

Pr (m,_aX(Ri) > 2;?) =P (0 {R[ - Z’ZD

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = #. Var[Rj] = £.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2 capacity?

Pr (m,_aX(Ri) > 2;?) = Pr (0 {@]D

We want to show that Pr (Uf;1 R > ZW”]) is small.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = #. Var[Rj] = £.

12



Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2 capacity? >

Pr(max(R)EI:) <O{R> D ?(17(\\?@

We want to show that Pr (Uf;1 R > ZW”]) is small.

How do we do this? Note that Ry, ..., Ry are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = #. Var[Rj] = £.
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The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pl’(Ak)
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The Union Bound

[ Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pr(Ak)
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The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pl’(Ak)

When is the union bound tight?
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The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pl’(Ak)

When is the union bound tight? When A,, ..., A, are all disjoint.
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The Union Bound

Union Bound: For any random events A, A, ..., Ag,

PI’(Aj UAU... UAk) < PF(A1) + PI’(Az) +...+ Pr(Ak)

NN
When is the union bound tight? When A, .
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.., A are all disjoint.
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Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[ - 2”)

=1
/—/

n: total number of requests, k: number of servers randomly assigned requests,

R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7. ”




Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[ - 2”)

=1

k
< ZPr <[R,- > TD (Union Bound)
i—1

n: total number of requests, k: number of servers randomly assigned requests,

R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7. ”




Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.
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Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[ - 2”)

=1

Pr <[R,- > MD (Union Bound)

= (Bound from Chebyshev's)

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.
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What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[ - ZQD

=1

k
2n .
< Z;Pr <[R,- > kD (Union Bound)
|=
kR
< T :
< Z . (Bound from Chebyshev's)
=1 T

As long as kR < O(y/n), with good probability, the maximum server
load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.

Applying the Union Bound

14



