COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 24 (Final Lecture!)



- Problem Set 5 can be submitted up to 12/11 (Monday) at 11:59pm.
- Exam is next Thursday 12/14, from 10:30am-12:30pm in class.

- | am holding office hours Tuesday 12/12
1-3:30pm and Wednesday 12/13 2pm-3pm Both will be held
in CS140.

- It would be really helpful if you could fill out SRTIs for this class.

- There is no quiz due this week.



Last Class:
- Analysis of gradient descent for convex and Lipschitz functions.
This Class:

- Extend gradient descent to constrained optimization via
projected gradient descent.

- Course wrap up and review.



GD Analysis Proof
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Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n = %,

and starting point within radius R of ., outputs d satisfying:

f(9) < f(6.) +e.
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Step 1: For all i, f(6;) — L

Step 2: 1 i, f(0) —f(0.) < £ + %5~

—



Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

* = arg min f(6),
des

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € Sand A € [0, 1]:

(=N +r-6,€8

Eg S={0eR?:|d], <1}



Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(y) = argming_g 16 = ¥l
- ForS={feR?:||f], <1} what is Ps(¥)?

- For S being a k dimensional subspace of RY what is Ps(})?
Projected Gradient Descent

- Choose some initialization #; and set n = Gi\/f.
- Fori=1,...,t—1
C 000 =0~ 0 - VfiB)
© G = Ps(81).

- Return 6 = arg min g f(@)



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY jeR? andd e S,

IPs(¥) — 6l < |I7 — 6]l




Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > g iterations, n = %,

and starting point within radius R of 6, outputs § satisfying:

f(6) < f(8.) + € = minf(8) + ¢

0eS

Recall: 9% = 6, — - Vf(d)) and 6., = Ps(6)").
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Step 1.a: Forall i, f(6) — f(6.) < 16 =6 I 2,17‘9’“ 6.l +%.

Step 2: 1S f(6) — fi0L) < £ + 1 = Theorem,



Course Review



Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/e?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

- Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.
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Thanks for a great semester!
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Final Exam Questions/Review
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Final Exam Questions/Review

15



Final Exam Questions/Review



Final Exam Questions/Review



Final Exam Questions/Review



