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- Problem Set 5 is posted. It can be turned in up to 12/11 (next
Monday) at 11:59pm It is optional — the core problems can
replace the lowest of your previous four core problem grades.

- The final will be on 12/14 in this room, 10:30am-12:30pm.
- See Piazza for additional final review office ours schedule.

- See website/Moodle for final prep material.



Last Class:

- Multivariable calculus review and gradient computation.

- Introduction to gradient descent. Motivation as a greedy
algorithm.

- Convex functions
This Class:

- Analysis of gradient descent for Lipschitz, convex functions.

- Extension to projected gradient descent for constrained
optimization.



When Does Gradient Descent Work?
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Gradient Descent Update: 6, = 6; — nVf(0;)



Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and A € [0,1]:

(1= X)-f() + A-f(B) = F((1=2) -G +7-0))
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Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € RY and X € [0,1]:

f(62) — £8) = VA (8 - 71)
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Lipschitz Functions
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Gradient Descent Update:
f(6) Oipq = 6 — nVI(0)

v 0*
Need to assume that the function is Lipschitz (size of gradient

is bounded): There is some G st

VO VA2 < G e Vo0 |f(61) = f(62)] < G- 161 — 62l



Well-Behaved Functions
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Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and A € [0,1]:

(1= X)-f() + A-f(B) = F((1=2) -G +7-0))

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and A € [0,1]:

— —

f8:) - 1(6) = VG (6 - )

Definition - Lipschitz Function: A function f : RY — R is G-
Lipschitz if || VA(8), < G for all 6.




GD Analysis - Convex Functions

Assume that:

- fis convex.
- fis G-Lipschitz.

- ||6: — 6.]]2 < R where 6, is the initialization point.
Gradient Descent

- Choose some initialization 91 and setn =

s

- Fori=1,...,t—1

+ 041 =6, —nVA(6)

- Return = arg ming 5{]‘(07)



GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

Step 1: For all i, f(6) — f(6.) < \|@*§*\\§;E§IA1*§*‘|§ + ”Zﬁ Visually:
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .

Step 1: For all i, f(6) — f(d.) < L=0elislfle=fli | 06" Formally.
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GD Analysis Proof

~
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Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n = %,

and starting point within radius R of ., outputs d satisfying:

f(9) < f(6.) +e.

\.

i g 0 ;0. = 010, 2 2
Step 1: For all i, f(7) — f(f..) < L= 2 4 28

IR N N 5 g N2_g a2
Step 11: Vf(6)'(F; — 0.) < L=Celiolafelb 4 0@ . Step 1 by
convexity.
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GD Analysis Proof
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Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n = %,

and starting point within radius R of ., outputs d satisfying:

f(9) < f(6.) +e.

\.

7 G—0, 2101 —0. |2 2
(0*) S [16; 15— 11641 I + % N

Step 1: For all i, f(6;) — L

Step 2: 1 i, f(0) —f(0.) < £ + %5~

—
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6, outputs 8 satisfying:

f(B) < f(8.) + .
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

* = arg min f(6),
des

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € Sand A € [0, 1]:

(=N +r-6,€8

Eg S={0eR?:|d], <1}



Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(y) = argming_g 16 = ¥l
- ForS={feR?:||f], <1} what is Ps(¥)?

- For S being a k dimensional subspace of RY what is Ps(})?
Projected Gradient Descent

- Choose some initialization #; and set n = Gi\/f.
- Fori=1,...,t—1
C 000 =0~ 0 - VfiB)
© G = Ps(81).

- Return 6 = arg min g f(@)



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY jeR? andd e S,

IPs(¥) — 6l < |I7 — 6]l




Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > szz i = %,
and starting point within radius R of 6, outputs § satisfying:

f(B) < f(6.) + € = minf(6) +

0eS

Recall: 653 = 0 — - Vf(6) and 611 = Ps(01%3").

0 9 é‘(out 2
Step 1: For all i, f(d) — f(4.) < | I 2Hn %1 | %

Step 1.a: For all i, f(7) — f(d.) < 10=2-12 2”9’“ %15 Ly

n

Step 2: %Zfﬁ f(6) — f(6,) < T;t + "G = Theorem.
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