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Logistics

• Problem Set 4 core problems are due Friday. Challenge
problems are due Monday.

• Quiz due Monday (last of the semester).

• Problem Set 5 will be released Friday or Saturday, and is
optional. The core problems can be used to replace the lowest
core problem grade on a previous problem set. It will contain
three challenge problems as well.

• Final exam study material has been released on the course
webpage/Moodle. I will announce additional office hours for
final review shortly.

• Next Monday 12/4 at 3pm in CS 140 I will hold another linear
algebra review session.

• Please fill out SRTIs (course reviews)!
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Summary

Last Class Before Break: Fast computation of the
SVD/eigendecomposition.

• Power method for approximating the top eigenvector of a
matrix.

• Analysis of convergence rate – we didn’t quite finish but we
covered the most important ideas.

• Convergence rate depends on the gap between the largest and
second largest eigenvalue.

Final Three Classes:

• General iterative algorithms for optimization, specifically
gradient descent and its variants.

• What are these methods, when are they applied, and how do
you analyze their performance?

• Small taste of what you can find in COMPSCI 590OP or 690OP. 3
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Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

• Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

• Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

• Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

• Unconstrained convex and non-convex optimization.

• Linear programming, quadratic programming, semidefinite
programming
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Continuous Optimization Examples
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Mathematical Setup

Given some function f : Rd → R, find !θ! with:

f(!θ!) = min
"θ∈Rd

f(!θ)

+ ε

Typically up to some small approximation factor.

Often under some constraints:

• ‖!θ‖2 ≤ 1, ‖!θ‖1 ≤ 1.
• A!θ ≤ !b, !θTA!θ ≥ 0.
•
∑d

i=1
!θ(i) ≤ c.
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Why Continuous Optimization?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

• Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

• The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

• Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.
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Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉

= !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d)

.

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8



Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉

= !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d)

.

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

- - - - -

" ' " '('¥1



Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8



Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8



Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

- - -
- -loss (Moki)-yi)2
D - - -



Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) =

L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

= -



Optimization in ML

Example: Linear Regression

Model: M!θ : Rd → R with M!θ(!x)
def
= 〈!θ,!x〉 = !θ(1) ·!x(1) + . . .+ !θ(d) ·!x(d).

Parameter Vector: !θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) !x1, . . . ,!xn
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find !θ∗
minimizing the loss function:

LX,y(!θ) = L(!θ, X,!y) =
n∑

i=1

$(M!θ(!xi), yi)

where $ is some measurement of how far M!θ(!xi) is from yi.

• $(M!θ(!xi), yi) =
(
M!θ(!xi)− yi

)2 (least squares regression)

• yi ∈ {−1, 1} and $(M!θ(!xi), yi) = ln
(
1+ exp(−yiM!θ(!xi))

)
(logistic

regression)

8

( - -



Optimization in ML

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

• Supervised means we have labels y1, . . . , yn for the training
points.

• Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

• Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

• Generalization tries to explain why minimizing the loss LX,!y(!θ)
on the training points minimizes the loss on future test points.
I.e., makes us have good predictions on future inputs.
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Optimization Algorithms

Choice of optimization algorithm for minimizing f(!θ) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on !θ (e.g., ‖!θ‖ < c).

• Computational constraints, such as memory constraints.

LX,!y(!θ) =
n∑

i=1

$(M!θ(!xi), yi)

What are some popular optimization algorithms?
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Gradient Descent

Next few classes: Gradient descent (and some important variants)

• An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

• Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

• At each step, tries to move towards the lowest nearby point in
the function that is can – in the opposite direction of the
gradient.
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Multivariate Calculus Review

Let !ei ∈ Rd denote the ith standard basis vector,
!ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂!θ(i)

= lim
ε→0

f(!θ + ε · !ei)− f(!θ)
ε

.

Directional Derivative:

D"v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.
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Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.

!∇f(!θ) =





∂f
∂!θ(1)
∂f

∂!θ(2)
...
∂f

∂!θ(d)





Directional Derivative in Terms of the Gradient:

D!v f(!θ) = 〈!v, !∇f(!θ)〉.
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Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(!θ) for any !θ.

Gradient Evaluation: Can compute !∇f(!θ) for any !θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

14



Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(!θ) for any !θ.

Gradient Evaluation: Can compute !∇f(!θ) for any !θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

14

=



Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at !θ(0), in each iteration let !θ(i) = !θ(i−1) + η!v, where η is a
(small) ‘step size’ and !v is a direction chosen to minimize
f(!θ(i−1) + η!v).

D!v f(!θ) = lim
ε→0

f(!θ + ε!v)− f(!θ)
ε

.

So for small η:

f(!θ(i))− f(!θ(i−1)) = f(!θ(i−1) + η!v)− f(!θ(i−1))

≈ η · D!vf(!θ(i−1))

= η · 〈!v, !∇f(!θ(i−1))〉.

We want to choose !v minimizing 〈!v, !∇f(!θ(i−1))〉 – i.e., pointing in the
direction of !∇f(!θ(i−1)) but with the opposite sign.
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Gradient Descent Psuedocode

Gradient Descent

• Choose some initialization !θ(0).
• For i = 1, . . . , t

• !θ(i) = !θ(i−1) − η∇f(!θ(i−1))

• Return !θ(t), as an approximate minimizer of f(!θ).

Step size η is chosen ahead of time or adapted during the
algorithm (details to come.)

• For now assume η stays the same in each iteration.

16
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When Does Gradient Descent Work?

Gradient Descent Update: !θi+1 = !θi − η∇f(!θi)
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Convexity

Definition – Convex Function: A function f : Rd → R is convex
if and only if, for any !θ1, !θ2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f(!θ1) + λ · f(!θ2) ≥ f
(
(1− λ) · !θ1 + λ · !θ2

)

18
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Convexity

Corollary – Convex Function: A function f : Rd → R is convex if
and only if, for any !θ1, !θ2 ∈ Rd and λ ∈ [0, 1]:

f(!θ2)− f(!θ1) ≥ !∇f(!θ1)T
(
!θ2 − !θ1

)
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Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size η is
chosen appropriately, gradient descent will converge to a
approximate minimizer θ̂ with:

f(θ̂) ≤ f(!θ∗) + ε = min
!θ

f(!θ) + ε.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point θ̂ with:

‖∇f(θ̂)‖2 ≤ ε.

Examples: neural networks, clustering, mixture models.

20
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Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point θ̂ with:

‖∇f(θ̂)‖2 ≤ ε.

Examples: neural networks, clustering, mixture models.
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