COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 22

- Problem Set 4 core problems are due Friday._Qja\ll'eng
problems are due Monday.

- Quiz due Monday (last of the semester).

- Problem Set 5 will be released Friday or Saturday, and is
optional. The core problems can be used to replace the lowest
core problem grade on a previous problem set. It will contain
three challenge problems as well.

- Final exam study material has been released on the course
webpage/Moodle. | will announce additional office hours for
final review shortly.

- Next Monday 12/4 at 3pm in CS 140 | will hold another linear
algebra review session.

- Please fill out SRTIs (course reviews)!

Last Class Before Break: Fast computation of the
SVD/eigendecomposition.
- Power method for approximating the top eigenvector of a
—_— T

matrix.

- Analysis of convergence rate — we didn't quite finish but we
covered the most important ideas.

- Convergence rate depends on the gap between the largest and

. S
second largest eigenvalue.
ONG drsest €l

Final Three Classes:
K’—\

- General iterative algorithms for optimization, specifically
gradient descent and its variants.

- What are these methods, when are they applied, and how do
you analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P. 3
B ——

Discrete vs. Continuous Optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.

——
- Linear programming, quadratic programming, semidefinite
programming

Continuous Optimization Examples

- &

geER

1 fER
\?{ 0*

Mathematical Setup

Given some function f: RY — R, find 6, with:

fB)=mnf®) O J e F(o)
- Qe

Mathematical Setup

Given some function f: RY — R, find 6, with:

f(6.) = min f(G) + ¢
eeR/

Typically up to some small approximation factor.

Mathematical Setup

= mex XTNX

KN\
(%)

N
Given some function f: RY — R, find 6, with:

f(6.) = min f(8) + ¢

min
GeRrd
Typically up to some small approximation factor.
Often under some constraints:

6l <1, 18]y < 1.

- AG<b, 67AG > 0.

d - .
" i f(0) <c

Why Continuous Optimization?

Modern machine learning centers around continuous optimization.
Typical Set Up: (supervised machine learning)
-+ Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

Optimization in ML

Example: Linear Regression

Optimization in ML

Example: Linear Regression -
e -]
Model: M : RY — R with My (X) L4, %) %

—_—

SN

Optimization in ML

Example: Linear Regression

Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).

Optimization in ML

Example: Linear Regression
Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).

Parameter Vector: § € RY (the regression coefficients)

Optimization in ML

Example: Linear Regression
Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefficients)

Optimization Problem: Given data points (training points) X, ..., Xp
(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find 0,
= -

minimizing the loss function: i AL
lbsb (_ma(\(l) "j\)

L) = 3 mgt).)

where £ is some measurement of how far /\/l@(x,-) is fromy;.

Optimization in ML

Example: Linear Regression

Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., X,

(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find g,

minimizing the loss function:
n

L(G,X,) = Z UMg(X)), Vi)

i=1

where ¢ is some measurement of how far Mz(X;) is from y;.

UMK, Vi) = (Mg(X) — y,~)2 (least squares regression)

Vi E\{_—L'I} and E(Mé‘()?,),y,) =In (1 + exp(—y,-Md)?,-))) (lOgiStiC
regression)

Optimization in ML

Example: Linear Regression

Model: My : RY — R with My(X) & (4,%) = 6(1)-X(1) + + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., X,

(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find g,
minimizing the loss function:

Lx,y(0) L@&_) = UMX), i)

i=1

where ¢ is some measurement of how far Mz(X;) is from y;.

UMK, Vi) = (Mg(X) — y,~)2 (least squares regression)

cyie {—1,1} and E(Mé‘()?,),y,) =In (1 + exp(—y,-Md)?,-))) (lOgiStiC
regression)

Optimization in ML

- Supervised means we have labels y;, ...,y for the training
points.

[Solving the final optimization problem has many different
names: likelihood maximization, empirical risk minimization,
minimizing training loss, etc.

- Continuous optimization is also very common in unsupervised

learning. (PCA, spectral clustering, etc.)
————

{ Generalization tries to explain why minimizing the loss Ly y(é)
on the training points minimizes the loss on future test points.
l.e., makes us have good predictions on future inputs.

A%

Optimization Algorithms

Choice of optimization algorithm for minimizing f(6) will depend on
many things: N

- The form of f (in ML, depends on the model & loss function).

- Any constraints on 6 (e.g, ||4]| < ©).

- Computational constraints, such as memory constraints.

Optimization Algorithms

—

Choice of optimization algorithm for minimizing f(6) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).

- Any constraints on 6 (e.g, ||4]| < ©).

- Computational constraints, such as memory constraints.
7L \L/—
RSP AV ,
~ % Ly (0) = > L(Mz(%),)
N
\,g\ ,:\/ i=1

e
: XLO

What are some popular optimization algorithms?
=L Leod ADA M
\
i e w0n 7\ DR GRAD

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be
applied to almost any continuous function we care about
optimizing.

- Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in
the function that is can - in the opposite direction of the
gradient.

1

Multivariate Calculus Review

Let &; € RY denote the (" standard basis vector,
& =1[0,0,1,0,0,...,0].

1 at position i

12

Multivariate Calculus Review

Let &; € RY denote the (" standard basis vector,
& =1[0,0,1,0,0,...,0].

S
1 at position i \?\ ' M - HL

Partial Derivative:

£ Of A0+ &) fD)
@K}B 8_50_) e—0 €
B Lte

12

Multivariate Calculus Review

Let &; € RY denote the (" standard basis vector,
& =1[0,0,1,0,0,...,0].

1 at position i

Partial Derivative:

of . f(9q+6-§/)—f(q)_

= m
a0(i) 0 €

Directional Derivative:

12

Multivariate Calculus Review

N d
PLnETR Vel
Gradient: Just a ‘list’ of the partial derivatives.
G o

13

Multivariate Calculus Review

Gradient: Just a ‘list’ of the partial derivatives.
of

20(1)

Vi) = | 7

a6(d)

Directional Derivative in Terms of the Gradient:

Dy f(6) = (V, Vf(6)).

/,’———%
9F ¢ \G)OF
MO e | EQ@

13

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(6) for any .

Gradient Evaluation: Can compute V£(f) for any .

14

Function Access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(6) for any .

Gradient Evaluation: Can compute V£(f) for any .

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute
the gradient via chain rule, using backpropagation).

14

Gradient Descent Greedy Approach

Gradient desce_n% is a greedy iterative optimization algorithm:
Starting at 8(9),"in each iteration let #1) = 5(";1)+ nv, where 7 is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

»\! ~\
. ~lg
%/

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

_— e—0 €

Dy FA) = tim O+) = f8U) l

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy F(AY) = lim FOUD + €7) — F(8V D)

e—0 €
—_—

So for small #:

FOV) = O) = FOUD + 09) — (V)

—_—_— e

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy f#) = fi TE 2 V) — f(BU)
v e—0 € '
- Bi

FID) — F@0) = FIUD +) — FEUD) - Dof(A)

-

So for small #:

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §0) = 9U=" ++ 5y where n is a
(small) ‘step size’ and V is a direction chosen to minimize

O +n0).

Dy F(AY) = lim FOUD + €7) — F(8V D)

e—0 €
—_—

So for small #:

O — FOVD) = FAUD +) — F(OU) ~ - Df(U)
- = - (7, VAU).
h——

15

Gradient Descent Greedy Approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let 1) = gU-7 -1V, where r] isa
(small) ‘step size’ and V is a direction chosen to minimize &

fOU=D +).

e—0 €

0"\
D F(V) — tim [0 A = FOD) \
5

So for small #:

) — J0U) = 00D 4 97) — FIU) & - DA (A
=n- (v, VAO'™)).
—_
We want to choose v minimizing (v, VA(6U=)) - i.e, pointing in the
direction of VA(#U=") but with the opposite sign.

VF(PJ% 15

vy

Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization 6(%).
- Fori=1,...,t
<) = gu=1) — pA(HU-1)
- - L -
- Return 619, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

16

Gradient Descent Psuedocode

Gradient Descent

- Choose some initialization 6(%).
- Fori=1,...,t
< 0 = gu=D) — puA(HU-)
- Return 1, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

16

When Does Gradient Descent Work?

Os "8‘¥ = r%ﬁ :F‘(®>
Y £oe 6 € R Vf(QQ)E]R
X BUAGNI VS
f0) ¢
aoy *“\ S f®) o\ v
VG[Q%“” (\(9' /[N
e < | —\ . <
-0 VS Y : < *
® it I° G;q'?f%:|] i

_/A

> |
O
Gradient Descent Update: 0, = 0, — nVf(0;) U

w VAR e £ (e7)

Definition — Convex Function: A function f: RY — R is convex
if and only |f for any 6;,6, € R? and A € [0, 1]:

J f;) 91)+>\5f(9z)>f((2B+ 2 6) <

P'(0) 20
Q@\f’ X o Al g
oo BB

2 Q— PNCTLE 7:>
=N r SO

<

IONE

(-NB, + 1D 18

and only if, for any @3, 6, € RY el AAJOM:
| 76) - 78%) = Iredny (7 - 61)

~——

Corollary - Convex Function: A function f: R? — R is convex if

£x)

VAR

19

1
X

A(S2)

f(6)
y_ NS

O+

\I‘LU|)

0]

19

Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer 4 with:

f(B) < f(6.) + e = minf(0) +c.

q

—_—

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

20

Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer 4 with:

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent

will converge to a approximate stationary point é with:
-

VA2 < e
—

20

Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer 4 with:

f0) < F(0.) + ¢ = minf(0) + e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point é with:

IVA@)ll2 < e.

Examples: neural networks, clustering, mixture models.

20

