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- Problem Set 3 is due Friday at 11:59pm.
- Problem Set 4 will be released immediately and due 12/1.

Next Tuesday will be the last class of the spectral algorithms
unit. We will take a closer look at how eigenvectors/singular
vectors are actually computed in practice.



Last Class: Spectral Clustering

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

- The second smallest eigenvector can be used to find a small
but balanced cut.
[

- Heuristic argument. Mathematical motivation via \/
Courant-Fischer, but no formal proofs. >< N



Last Class: Spectral Clustering

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

- The second smallest eigenvector can be used to find a small
but balanced cut.

- Heuristic argument. Mathematical motivation via
Courant-Fischer, but no formal proofs.

This Class: The Stochastic Block Model

- Asimple clustered graph model where we can prove the
effectiveness of spectral clustering (i.e., clustering with the
Laplacian eigenvectors)



Review

For a graph with adjacency matrix A and degree matrix D,L=D —A is
the graph Laplacian.
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How smooth any vector vV is over the graph can be measured by:
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- The second smallest eigenvector vV, of L, minimizes V! LV,
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\3<_\anu, subjec\t_tgvﬂ_ﬂ =0. Vo =
- By thresholding this vector, we tend to find small cuts (V] _,LV,_4
is small), that are well-balanced (V7 _,T = 0).




Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

Vp—1 =

arg min

VLV

veRdwith ||7]|=1, VT=0
ver with ivii=h v

Set S to be all nodes with V,_4(i) < 0, T to be all with v, _+(i) > 0.
’\
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Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

(A— arg min VLV
veRdwith ||7]|=1, VT=0

Set S to be all nodes with V, (i) < 0, T to be all with V,,_4(i) > 0.




Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let G,(p,q) be a
distribution over graphs on n nodes, split randomly Tnto two groups
B and C, each with n/2 nodes.
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Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let G,(p,q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with
probability p (including self-loops).

- Any two nodes in different groups are connected with prob.
q<p.

- Connections are independent.



Stochastic Block Model

Stochastic Block Model (Planted Partition Model): Let G,(p,q) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with (K\ 9"\)
probability p (including self-loops). <\ \Q (i, K)

- Any two nodes in different groups are connected with prob.
a<pr
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Linear Algebraic View

Let G be a stochastic block model graph drawn from G,(p, q).

- Let A € R™ " be the adjacency matrix of G, ordered in terms of

group ID.

B C
(n/2nodes)  (n/2 nodes)
L 1

B —
(n/2 nodes)

C
(n/2 nodes)

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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Let A € R"*" be the adjacency matrix of G, ordered in terms of
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(n/2nodes)  (n/2 nodes)
L 1

B —
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




Expected Adjacency Matrix

Letting G be a stochastic block model graph drawn from G,(p, q) and
A € R"™" be its adjacency matrix. What is E[A]?
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from G,(p, q) and
A € R"*" be its adjacency matrix. (E[A]);; = p for i,j in same group,
(E[A]);j = g otherwise.
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from G,(p, q) and
A € R™" be its adjacency matrix. (E[A]);; = p fori,j in same group,

(E[A])i,; = g otherwise. ?; % :?‘r‘wn\( L/%: )
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes

each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from G,(p, q) and
A € R"*" be its adjacency matrix. (E[A]);; = p for i,j in same group,
(E[A]);j = g otherwise.

B c
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What is rank(E[A])? What
(/2 ,E,des) 7 p q are the eigenvectors and
i E[A] eigenvalues of E[A]?
c
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




Expected Adjacency Spectrum

Letting G be a stochastic block model graph drawn from G,(p, q) and
A € R™" be its adjacency matrix, what are the e|genvectors and \/
e|genvalues of E[A]?
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Expected Adjacency Spectrum
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If we compute V5 th r the communities B and C!

1



Expected Adjacency Spectrum
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If we compute v, then we recover the communities B and C!

- Can show that for GN\GH(&Q)QS close to E[A] with high
probability (matrix concentration inequality).

-/ Thus, the true second eigenvector of A is close to

[1,1,1,...,—1,=1,—1] and gives a good estimate of the
communities.
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Spectrum of Permuted Matrix

Goal is to recover communities - so adjacency matrix won't be
ordered in terms of community ID (or our job is already done!)
C
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Spectrum of Permuted Matrix

Goal is to recover communities - so adjacency matrix won't be
ordered in terms of community ID (or our job is already done!)
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- Actual adjacency matrix is PAPT where P is a random

permutation matrix and A is s the ordered adjacency matrix.
- Exercise (see Problem Set 3): The first two eigenvectors of

PAPT are PV, and PV
“ Py =1,-11-1,...,1,1, 1] gives community ids.
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Expected Laplacian Spectrum

Letting G be a stochastic block model graph drawn from G,(p, q),
A € R"™" be its adjacency matrix and L be its Laplacian, what are the
eigenvectors and eigenvalues of E[L]?
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Expected Laplacian Spectrum

Letting G be a stochastic block model graph drawn from G,(p, g), V.-

A € R"™" be its adjacency matrix and L be its Laplacian, what are the @6)“

eigenvectors and eigenvalues of E[L]? ﬁ[p,}
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Expected Laplacian Spectrum

Upshot: The second smallest eigenvector of E[L] is xs,c — the
indicator vector for the cut between the communities.

15



Expected Laplacian Spectrum

—

Upshot: The second smallest eigenvector of E[L] is xs,c — the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly equal

to its expectation, partitioning using this eigenvector (i.e,
spectral clustering) would exactly recover the two communities

B and C.
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Expected Laplacian Spectrum

Upshot: The second smallest eigenvector of E[L] is xs,c — the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly equal
to its expectation, partitioning using this eigenvector (i.e,
spectral clustering) would exactly recover the two communities
B and C.

How do we show that a matrix (e.g., A) is close to its expectation?

Matrix concentration inequalities. A ﬁ [P\‘B

- Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

Random matrix theory is a very recent and cutting edge subfield
of mathematics that is being actively applied in computer
Science, statistics, and ML.
15



Matrix Concentration

Everything after this slide is bonus material, if you are
interested in how we formally prove that spectral clustering
succeeds in the stochastic block model, using matrix
concentration bounds.

16



Matrix Concentration

Matrix Concentration Inequality: If p > O (%) then with
high probability

IA = E[A][l> < O(v/pn).

where || - || is the matrix spectral norm (operator norm).

For any X € R™, [X[, = max,cpo. oy, X2

17



Matrix Concentration

Matrix Concentration Inequality: If p > O (%) then with
high probability

IA = E[A][l> < O(v/pn).

where || - || is the matrix spectral norm (operator norm).

For any X € R, [[X|l» = max,cpa.) 7,1 |X2]>.

Exercise: Show that ||X||; is equal to the largest singular value of X.
For symmetric X (like A — E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.
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Matrix Concentration

Matrix Concentration Inequality: If p > O (%) then with
high probability

IA = E[A][l> < O(v/pn).

where || - || is the matrix spectral norm (operator norm).

For any X € R™9, [IX||2 = max,ege. z,=1 [1X2]|2.

Exercise: Show that ||X||; is equal to the largest singular value of X.
For symmetric X (like A — E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the
second eigenvectors of A and E[A] are close. How does this relate to
their difference in spectral norm?

17



Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A/A € RI*? are symmetric with |[A — All, < e
and eigenvectors vq,Vs, ...,V and Vq,,, ..., V4. Letting
6(vj, v;) denote the angle between v; and v;, for all I:

sin[0(vi, ¥)] < c

min#, |)\,’ - )‘j‘

where \q,..., Ay are the eigenvalues of A.

The errors get large if there are eigenvalues with similar
magnitudes.

Eigenvector Perturbation

18



Eigenvector Perturbation

A A A-A
1+¢ O 1 0 e 0

0 1 0 1+¢ 0 ¢
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Application to Stochastic Block Model

Claim 1 (Matrix Concentration): For p > O (@)
IA —E[A]ll2 < O(v/pn).
Claim 2 (Davis-Kahan): For p > O (%)
sinf(vy,vy) < O(vPn)

min#[ |)\, - )\/|

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.

20



Application to Stochastic Block Model

Claim 1 (Matrix Concentration): For p > O (%)
IA —E[A]ll2 < O(v/pn).
Claim 2 (Davis-Kahan): For p > O (%)
sinf(vy,vy) < O(vPn)

minj..i A — Ayl
Recall: E[A], has eigenvalues A\ = (‘”2‘7)”, A = (p’zq’”, A\ = 0 for
i >3.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.
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Application to Stochastic Block Model

Claim 1 (Matrix Concentration): For p > O (%)
IA —E[A]ll2 < O(v/pn).
Claim 2 (Davis-Kahan): For p > O (%)
sinf(vy,vy) < O(vPn)

min#f |)\, - )\/|

Recall: E[A], has eigenvalues A\ = (‘”2‘7)”, A = (p’zq’”, A\ = 0 for
i >3.

_ : (p—aq)n
rjn;’n [Ai = Aj| = min <C]n7 )

Typically, @ will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.
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Application to Stochastic Block Model

Claim 1 (Matrix Concentration): For p > O (%)
|A —E[A]||, < O(v/pn).
. . . log"*
Claim 2 (Davis-Kahan): For p > O (ng)

, - O(y/pn) O(y/pPn) < VP >
sinf(vy, V) < — < =0
(¥ < N = -anz -\ ayva
Recall: E[A], has eigenvalues A, = X0 ) — (p’zq’”, A\ = 0 for
i >3.

_ : (p—aq)n
rjn;’n [Ai = Aj| = min <C]n7 )

Typically, @ will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.
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Application to Stochastic Block Model

So Far: sin(v,,7,) < O ((p_{gﬁ).

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 21




Application to Stochastic Block Model

- v NV e g 2
So Far: sin6(v,,v,) < O ((p_q)ﬁ). What does this give us?

- Can show that this implies ||v, — %2 < O (ﬁ) (exercise).

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 21




Application to Stochastic Block Model

- v NV e g 2
So Far: sin6(v,,v,) < O ((p_q)\/ﬁ). What does this give us?

- Can show that this implies ||v, — %2 < O (ﬁ) (exercise).

- Wis ﬁXB,cI the community indicator vector.
B C

(n/2 nodes) (n/2 nodes)
A

1 1 1 1 1 1 1 1
RV R W R
v,

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 21




- v NV e g 2
So Far: sin6(v,,v,) < O ((p_q)ﬁ). What does this give us?

- Can show that this implies ||v, — %2 < O (ﬁ) (exercise).

- Wis ﬁXB"CZ the community indicator vector.
B C

(n/2 nodes) (n/2 nodes)
A

1 1 1 1 1 1 1 1
RV R W R
)

- Every i where vy(i), ¥,(i) differ in sign contributes > 1 to
lv2 = Va3

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.

Application to Stochastic Block Model
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Application to Stochastic Block Model

- v NV e g 2
So Far: sin6(v,,v,) < O ((p_q)ﬁ). What does this give us?

- Can show that this implies ||v, — %2 < O (ﬁ) (exercise).

- Wis ﬁXB"CZ the community indicator vector.
B C

(n/2 nodes) (n/2 nodes)
A

1 1 1 1 1 1 1 1
RV R W R
)

- Every i where vy(i), ¥,(i) differ in sign contributes > 1 to
lv2 = Va3

- So they differ in sign in at most O (( ) positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 21




Application to Stochastic Block Model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of

this vector, we will correctly assign all but O (ﬁ nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
' 1 . 1 \ p L . 1 ‘
1 1 1 1 1 1 1 1
.03 .—.01.02.01 —.04 —.03 —.01 —.03 ‘ R R R R R
~
V2 ~ XB,C
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Application to Stochastic Block Model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O (ﬁ) nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
r A Y A 1 I . T A 1
1 11 1 1 1 1
.03 .—.01.02 .01 —.04 —.03 —.01 —.03 ‘ 5 R R AR AR TE TR
~
U2 ~ XB,C

- Why does the error increase as g gets close to p?
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Application to Stochastic Block Model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O (ﬁ) nodes.

B C B C

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
A A I . T s 1

r Y 1
1 1 1 1

.03 .—.01.02.01 —.04 —.03 —.01 —.03 ‘ = = = =
Vi
=~

1
FRE R
12 XBcC

5~

1
T n

Vn

=l

- Why does the error increase as g gets close to p?
- Even when p — g = O(1/+/n), assign all but an O(n) fraction
of nodes correctly. E.g., assign 99% of nodes correctly.
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