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Logistics

• Problem Set 3 is due Monday at 11:59pm.
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Summary

Last Class: SVD and Applications of Low-Rank Approximation

• SVD and connections to eigendecomposition and optimal
low-rank approximation.

• Matrix completion

• Entity Embeddings.

This Class: Linear Algebraic Techniques for Graph Analysis

• Start on graph clustering for community detection and
non-linear clustering.

• Spectral clustering: finding good cuts via Laplacian eigenvectors.
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Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Community detection in naturally occurring networks.

Next Few Classes: Find this cut using eigendecomposition. First –
motivate why this type of approach makes sense.
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Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let !v ∈ Rn be a cut indicator: !v(i) = 1 if i ∈ S. !v(i) = −1 if i ∈ T.
Want !v to have roughly equal numbers of 1s and −1s. I.e.,
!vT!1 ≈ 0.
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The Laplacian View

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector !v, its ‘smoothness’ over the graph is given by:
∑

(i,j)∈E

(!v(i)−!v(j))2 = !vTL!v.
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The Laplacian View

For a cut indicator vector !v ∈ {−1, 1}n with !v(i) = −1 for i ∈ S
and !v(i) = 1 for i ∈ T:

1. !vTL!V =
∑

(i,j)∈E(!v(i)−!v(j))2 = 4 · cut(S, T).

2. !vT!1 = |T|− |S|.

Want to minimize both !vTL!v (cut size) and !vT!1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.
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Smallest Laplacian Eigenvector

The smallest eigenvector of the Laplacian is:

!vn =
1√
n
·!1 = argmin

v∈Rn with ‖!v‖=1
!vTL!v

with eigenvalue λn(L) = !vTnL!vn = 0. Why?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.
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Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

!vn−1 = argmin
v∈Rn with ‖!v‖=1, !vTn!v=0

!vTL!v.

If !vn−1 were in
{
− 1√

n ,
1√
n

}n
it would have:

• !vTn−1L!vn−1 =
4√
n · cut(S, T) as small as possible given that

!vTn−1!vn = 1√
n
!vTn−1

!1 = |T|−|S|
n = 0.

• I.e., !vn−1 would indicate the smallest perfectly balanced
cut.

• The eigenvector !vn−1 ∈ Rn is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A − D. S, T: vertex sets on
different sides of cut.
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Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

!vn−1 = argmin
v∈Rdwith ‖!v‖=1, !vT!1=0

!vTL!V.

Set S to be all nodes with !vn−1(i) < 0, T to be all with !v2(i) ≥ 0.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D−1/2LD−1/2.

Important Consideration: What to do when we want to split the
graph into more than two parts?

n: number of nodes in graph, A ∈ Rn×n : adjacency matrix, D ∈ Rn×n : diagonal
degree matrix, L ∈ Rn×n : Laplacian matrix L = A− D.
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Laplacian Embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

!vTL!v =
∑

(i,j)∈E

[!v(i)−!v(j)]2.

Embedding points with coordinates given by
[!vn−1(j),!vn−2(j), . . . ,!vn−k(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

• Spectral Clustering

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Node2Vec, DeepWalk, etc.
(variants on Laplacian)
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Laplacian Embedding

Original Data: (not linearly separable)
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Laplacian Embedding

k-Nearest Neighbors Graph:
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Laplacian Embedding

Embedding with eigenvectors !vn−1,!vn−2: (linearly separable)
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Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

• Very common in algorithm design for data
analysis/machine learning (can be used to justify least
squares regression, k-means clustering, PCA, etc.)

• We’ll do this next time, introducing the Stochastic Block
Model.

14
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