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Last Class: SVD and Applications of Low-Rank Approximation
e \L\D
7\ - SVD and connections to elgendecomposmon and o \quau
low-rank approximation. Xy WLy X = X\f ‘j

- Matrix completion

- Entity Embeddings.



Last Class: SVD and Applications of Low-Rank Approximation

- SVD and connections to eigendecomposition and optimal
low-rank approximation.

- Matrix completion

- Entity Embeddings.

{ This Class: Linear Algebraic Techniques for Graph Analysis

- Start on graph clustering for community detection and
non-linear clustering.

- Spectral clustering: finding good cuts via Laplacian eigenvectors.



Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.
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Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First -
motivate why this type of approach makes sense.



Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph
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(a) Zachary Karate Club Graph



Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph
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Small cuts are often not informative.
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(a) Zachary Karate Club Graph

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph



Cut Minimization

Simple ldea: Partition clusters along minimum cut in graph. "'\U‘"lf
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Small cuts are often not informative.
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Solution: Encourage cuts that separate large sections of the graph.

- Llet Ve R" bea cut indicator: V(i) =1ifieS. V(i) = —1ifi e T.

Want V to have roughly equal numbers of 1s and —1s. l.e,
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The Laplacian View

For a graph with adjacency matrix A and degree matrix D,L=D —A is
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For any vector V, its ‘smoothness’ over the graph is given by:
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The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1_VILV = 32 )ee (V) — V() = 4 - cut(S.T).




The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

0 1 T = e (F0) — VO = - con(s. 7).
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The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 ee (V) = V())? = 4 - cut(S, T).
2. V1T =|T|—|S.

Want to minimize both V7LV (cut size) and ¥'T (imbalance).



The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 ee (V) = V())? = 4 - cut(S, T).

2. V1T =|T|—|S.
Want to minimize both V'LV (cut size) and ¥'1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



Smallest Laplacian Eigenvector
2
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The smallest e|genvector of the Laplacian is:
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vpoq = argmin VLY.
VERN with ||V||=1, VIv=0"  —

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vpoq = argmin VLY.
vERN with ||V||=1, V],v=0

n
If Vo_q were in {—in, 1n} it would have:

_—

Nt = Vi _1LVn_q = <= - cut(S, T) as small as possible given that
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vpoq = arg min Jw

vERN with ||V||=1, V],v=0

7 If Vo_q were in {—ﬁ, ! }n it would have:

=
sV Ly = % - cut(S,T) as small as possible given that
- l.e., Vp_1 would indicate the smallest perfectly balanced

cut.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vpoq = argmin VLY.
— VeR" with |[7]|=1, Vi=0 k

. . 1
If Vo_y were in { ——=, o= it would have:

VI LVp_q = T cut(s,T) as small,a poss*ble g|ven that
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- The eigenvector v,_1 € R" is not generally binary, but still -

satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

[—— arg min m
veRdwith [|7]|=1, VT=0

Set S to be all nodes with vV, (i) < 0, T to be all with V(i) > 0.




Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

Vp—1 =

arg min

veRdwith ||V]|=1, VT=0

Set S to be all nodes with V,,_4(i) < 0, T to be all with gg\(i)

VTLV.
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Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

[—— arg min VILV.
veRdwith [|7]|=1, VT=0

Set S to be all nodes with vV, (i) < 0, T to be all with V(i) > 0.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

R —
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L= A — D.
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commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors V_1, ..., V,_p of L.

- Represent each node by its corresponding row in V € R"<*
whose columns are Vp_1,...V,_p.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors V_1, ..., V,_p of L.

- Represent each node by its corresponding row in V e R"<*
whose columns are Vp_1,...V,_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D.
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize

VL = > [V(0) = V()P

(i,j)eE
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize

Vi = > [Wi) - V)P
(ij)eE
Embedding points with coordinates given by

_ [Va—10(), Va—2()); - - -, Va—r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize

= [0 -WF ez
(ij)eE
Embedding points with coordinates given by
Va—1()), Vn—2()), - - -, Vh_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

- Spectral Clustering

- Laplacian Eigenmaps

- Locally linear embedding
- Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian) 1




Laplacian Embedding

Original Data: (not linearly separable)
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k-Nearest Neighbors Graph:
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Laplacian Embedding
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Laplacian Embedding

Embedding with eigenvectors V,_+,V,_,: (linearly separable)
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Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.
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Generative Models

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data
analysis/machine learning (can be used to justify least
squares regression, k-means clustering, PCA, etc.)

- We'll do this next time, introducing the Stochastic Block
Model.
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