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- Problem Set 3 is due next Friday at 11:59pm.

- | made a small change to Problem 14: replacing ", o;(A)? with
Srnk(A) - (A)2. This don't change the solution to the problem,

=1
but as we will see will better match the conventions for SVD

that | introduce today. Léyﬂc {9}]]

- Linear algebra review session Monday 2-3pm. Location THD.



Last Class

- Finish up optimal low-rank apprgximation via
eigendecomposition. >(

. — .
- Figenvalue spectrum as a way oﬂ_n’easurmg low-rank
roximation error.

This Class: The SVD and Application of Low-Rank Approximation
Beyond Compression

The Singular Value Decomposition (SVD) and its connection to
eigendecomposition and low-rank approximation.

Low-rank matrix completion (predicting missing measurements
using low-rank structure).

tity embeddings (e.g., word embeddings, node embeddings).

L Low-rank approximation for non-linear dimensionality
eduction. 3



Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices.



Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any

matrix X € R with rank(X) = r can be written as X = UZV’.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
T _
Xx= (uzy) (V")
- T
\/i\)T/)i\/
AR 2N
N ARV A

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X =vzu'uzv’

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X =VEUTUZV" = vE2V"

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":

X'X = VEUTUZV’ = vE?V' (the eigendecomposition)

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
XX = VZUTU}:VT VE2V" (the eigendecomposition)
Similarly: XX = UZV, vzuT uz?u’.

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = V32V’ (the eigendecompositi

Similarly: XX — USVIVEUT - US?U" INCARAED
y- T — - : — —

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX" respectively. éz_;Hg —){Y)i()
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X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX" respectively. -y ¥

So, letting Vi, € R9*F have columns equal to V4, ..., Vi, we know that
XV, VI is the best rank-k approximation to X (given by PCA).

\ Q}\ 3/\\/»\}) 06\ X’Y A

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX respectively.

So, letting V, € RY*F have columns equal to V4, ..., vy, we know that
XV, V] is the best rank-k approximation to X (given by PCA).

What about U,U[X where Uy, € Rk has columns equal to U, . .., U?

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = U}:VT:
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the \}\<_ )OP

. T oot .
covariance matrix X'X and the gram matrix XX' respectively. '3 \3 15*
So, letting V, € RY%k have columns equal to V4, . . ., Vi, we know that “
XV, V] is the best rank-k approximation to X (given by PCA). N\{r@\
What about U,U[X where Uy, € Rk has columns equal to Uy, ..., Ug? \}9

Gives exactly the same approximation! X\] IL\/K UK EX X

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

Xp = XVV}, = ULUIX

The SVD and Optimal Low-Rank Approximation

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,

Column (feature) compression

Row (data point) compression

sale price
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _r gernxd | X — BJ|F IS given by:

X, = XV,V], = U UX

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of Uy
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _r gernxd | X — BJ|F IS given by:

X, = XV,V], = U UIX

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

Xp = XVpV}| = URUIX = U X, V]
N
Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,

nxd (rank-k)  orthonormal positive diagonal  orthonormal
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X: r ] - ‘LLZIL
Xp = arg min,. _r sernxd | X — BJ|F IS given by:
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X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




The SVD and Optimal Low-Rank Approximation

The best low- rank aEproxmation to X: rdNS: ﬂé Q

Xy = arg min;':?( p;: ernxa || X — Bl|r is given by:

v XVpVE = ULURX = U Z,V]
O _
o ( )

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.




SVD Review

SP (] %) 3600wz u
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- Every X € R"*9 can be written in its SVD as UXV'.
A

nxN

- U e R™* (orthonormal) contains the eigenvectors of XX'.
V e R (orthonormal) contains the eigenvectors of X'X.
¥ ¢ R™" (diagonal) contains their eigenvalues.

« UpUPX = XV, V) = URX VE = argmin  ||X — BJ|r.

B st rank(B)<Rk
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Applications of Low-Rank Approximation
Beyond Compression



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

Users

wlw|w|wlw

min|w (s lw|s|n
wlw w wlw w lw

[N IS YN PN IV R P
wla|lw|a|lw|/s|as
wls|lw|a|lw|/s|s
wla|lw|a|lw la|a
e lw|w|lw lw| w
Nlo|lw|w|w|la|a




Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies Assume rank(X)=1
LN
a 2
Users 1 . é \10 Soé
Xy %y V| 0 0o



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

5 1|4

3 5
Users
4

5 5

1 2

. 2
Solve] Y= argmin Z [XJJ? — Bj7k}
B st. rank(B)<k observed (j,k)
\—/



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies

11(38(4.1(41(34 (46 5 1|4

12(38(|42| 5 |34 |48 3 5

32

~ Users

3

3
23(3 |3 (3|3 (34

4

4 (423944 53 5 5
22(31(29(32|15|18 1 2
Solve: Y= argmin [X- — B }2
- r= g j,R j,k

B st. rank(B)<k observed (j,k)



Matrix Completion

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).

Classic example: the Netflix prize problem.

12(38(|42| 5 |34 |48
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Solve; Y= argmin Z X — Bj,k}z
Bst rank(B)SkO—%(uL

Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.



Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

1



Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very)

high-dimensional feature vector and then apply low-rank
approximation.

1



Example: Latent Semantic Analysis

Term Document Matrix X

%, %
%o Q9 Usg

%

% %
docifo|o|21|oflo|1|21|0]|0
doc2fo|o|o|1|0o|21|0f|0]|0

1 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1
doc_nj 1 0 0 0 0 0 0 1 1
l Low-Rank Approximation via
SVD
I d
T
zka
~
X ~ U,
n
~—"

12



Example: Latent Semantic Analysis

Term Document Matrix X

%, %
%o Q9 Usg

%0 Cop
docifo|o|21|oflo|1|21|0]|0
doc2fo|o|o|1|0o|21|0f|0]|0

1/1|of1|lofofo0o|1]0
ofoflofofofo|o|1]|1
docnli1|o|ofofofofo|1]1

Low-Rank Approximation via
SVD

ZT

12



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
doc_nj 1 ofojojofo0|oO 1 1
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Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
doc_nj 1 ofojojofo0|oO 1 1

If the error ||X — YZT||¢ is small, then on average,

Xi,a ~ (YZT)i,a - <)7)'aza>'
—

13



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
% ’%/"o&e % %
dc1lofof2|ofo|2]|1|[0]0
1|2|of1]ofo|of1]o0 - x ~ Y
ofojojofojoOo]|oO 1 1
doc_nj 1 ofojojofo0|oO 1 1 =

If the error ||X — YZT||¢ is small, then on average,
Xi,a ~ (YZT)i,a = <)7)'aza>'

l.e., (Vi,Za) = 1 when doc; contains word,.

13



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
IS ’%/"o.»g %, o
oo o] o1 ]0]0 =
1{1|o|1|ofofo|1]o0 - ~
ofojojofojoOo]|oO 1 1 x ~ Y
1 ofojojofo0|oO 1 1

ardn o o Y g
K- dw ndoru«hJ\-\\on o
+ Ifthe error [X — YZT||r is small, then on average, \y,,

Xi,a ~ (YZT)i,a = <)7)'aza>- Q,Q\C\/\ (I)l\,q\/\r\ % ‘|§

' o? U»O\’é,

- le, (Vi,Zq) ~ 1 when doc; contains word,.

- If doc; and dog; both contain wordy, (Vi,Za) = (Vj,Za) =~ 1.

Yo T

13



Example: Latent Semantic Analysis

If doc; and doc; both contain wordy, (Vi,Za) = (Vj,Za) =1

Zq

Yj

docj

Vi
doc i

14



Example: Latent Semantic Analysis

If doc; and doc; both contain wordy, (Vi,Za) = (Vj,Za) =1

Zq

Yj

Vi
doc_j
doc i

Another View: Each column of Y represents a ‘topic’ yi(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,

associates with that topic.
14



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD

o e %,
doc1lo|o|2]o|o0o|1|1]|0]|0

N nnooonoaal - ~ )
“Tololoole]o]o]a]n X =Y —
doc_ 1 ofojofo|o|1]|1

- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

15



Example: Latent Semantic Analysis

Term Document Matrix X

% o, %,

%o o

doc_1fo | o

T

o

o

doc 2|0 | o

AT

1

0

oo

1| off 1| of
offoo

of

1

docnf1|o

oo

¥

1
o
offof1
0
0

1

0
0
1
1

- Just like with documents, Z, and Z, will tend to have high dot

—)

Low-Rank Approxi mahon vnaTSVD

X =~

k

=—

product if word, and word, appear in many of the same

documents.
- In an SVD decomposition we set 2" =

- The columns of V,? are equivalently: the top k elgenvectors of

>,V

Qm?ﬁ

: fous >U L < J Lé&))

15



Example: Latent Semantic Analysis

Term Document Matrix X Low-Rank Approximation via SVD
o e %,

doc_1fo | o o1

V.7
un,u- X ~
-8B

> BB

doc 2|0 | o

of1

oo

oo

1
0

10
0 1
0

o= [=]=]-

docnf1|o oo 1

- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z" = XV},

- The columns of Vj are equivalently: the top k eigenvectors of
XTX.

- Claim: ZZ" is the best rank-k approximation of X’'X. l.e.,
arg minrank —k B HXTX - BHF

15



Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

16



Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear

in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.

- Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.
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LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q.p
is the number of documents that both word, and word, appear
in.

- Think about X"X as a similarity matrix (gram matrix, kernel
matrix) with entry (a, b) being the similarity between word, and
wordp.

- Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.

- Replacing X"X with these different metrics (sometimes
ropriately transformed) leads to popylar word embedding
algorithms: word2vec, GloVe, fastText, etg.

Example: Word Embedding

16



Example: Word Embedding

dogs

Paris

woman

man girl
\\ father 4‘ con slow
cat king 9U€€n boy
dog mother k
\ cats daughter
France

England
he
Italy \
Londo%

Rome

himself
herself

fast

slower

faster

longer

fastest
she long / \

slowest

longest

17



Example: Word Embedding

woman glrl
slower

man
\\ father slow
cat king queen boy

dog \ mother é faster slowest
\ cats daughter fast
dogs France
England longer
/ / he / fastest
Paris Italy \ sh long
Londor/

himself Jongest

Rome herself

Note: word2vec is typically described as a neural-network
method, but can be viewed as just a low-rank approximation of
a specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.
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