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- Problem Set 3 is due Friday 11/17, 11:59pm.
- Questions about participation grade.

- Additional linear algebra review office hours — Monday
11/13 3:00-4:00pm.



Basic Set Up

Reminder of Set Up: Assume that Xy, ..., X, lie close to any

k-dimensional subspace V of RY. Let X € R"*¢ be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R¥** be the
matrix with these vectors as its columns.

- W’ e R s the projection matrix onto V.
- XWVT gives the closest approximation to X with rows in V.

- The rows of XVV' are approximations to our input points in V.
The rows of XV are compressions of these approximate points. 3



Last Class

-V minimizing [|[X — XW'||Z is given by:

arg min X — XWT||2 = arg max [IXV]|2

orthonormal VERIXk orthonormal VERdxk

- This optimal V can be found greedily. Equivalently, by
computing the top k eigenvectors of X'X.

This Class:
- Finish up discussion of how optimal V is computed via
eigendecomposition.
- How do we assess the error of this optimal V.

- Connection to the singular value decomposition.



Solution via Eigendecomposition

V maximizing ||XV||? is given by:

k k

2 Al STYTY

argmax [VIE= 3 NG = 07X,
orthonormal VERYx* =1 =1

Can find the columns of V, V4, .. ., V,, greedily.

Vi= argmax ||XV||2VX'XV.
v with ||v]|.=1

V) = arg max VIXTXV.
7 with [[Vl=1, (7,7)=0

Vi = arg max VIXTXV.
7with [[vIl,=1, (7,7,)=0 Vj<k
Vi,...,Vy are the top k eigenvectors of X'X by the Courant-Fischer
Principle.

nal basis for subspace V. V e R9%k: matrix with columns ¥4, .. . , V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo- ]
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Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%9 have these vectors as columns.

[ N | | |
AV = [AV; Al -+ AVg| = | MV A --- Aig| =VA

Yields eigendecomposition: AW’ = A = VAV,



Review of Eigenvectors and Eigendecomposition

dxd orthonormal diagonal orthonormal

A
3

A =| v, V Va A VT

Aa-1
Aa

Typically order the eigenvectors in decreasing order:
M> N> > A\



Low-Rank Approximation via Eigendecomposition

dxd

XX =% 5|V A A

6 d-dimensional space

k-dim. subspace V




Low-Rank Approximation via Eigendecomposition

Upshot: Letting V|, have columns i, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, V.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

eigenvectors of XX, V,, € RY>k: matrix with columns ¥4, ..., V.

X1,..., % € RY data points, X € R">9: data matrix, v1,...,¥, € R top ]




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

- Problem Set: For any matrix A,

[IX = XViVEIIE = X[ tr(XTX) — [IXVEVE[I7 tr(VEXTXV)
d R
=D A(XTX) =) VXX,
i=1 =1

d k d
=S = YA = S A (xXx)

I=R+1

- d -
Allf = 320, [1dills = tr(ATA) (sum
of diagonal entries = sum eigenvalues).

|

X1,...,%n € R data points, X € R"™ % data matrix, V4,...,V, € R% top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.
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Spectrum Analysis

Claim: The error in approximating X with the best rank k

approximation (projecting onto the top k eigenvectors of X'X) is:

dxd

d
IX = XVRVEIE = D A(X'X)

I=R+1

XX

A2

VT

error of optimal low rank
approximation

784 dimensional vec

G

- Choose k to balance accuracy/compression - often at an ‘elbow’.

[ Xi1,...,% € RY: data points, X € R"%%: data matrix, v, .

At Are ~EVTIVY A7~ AXR. mmatriv it o~Al e O =

eige

..,Vx € R% top ] T



Spectrum Analysis

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
Xi1,...,X, are to a low-dimensional subspace).

784 dimensional vectors 784 dimensional vectors

eigendecomposition
? Eigenvalue Rank

X,...,% € RY data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X'X, Vi, € RY*k: matrix with columns V4, . .. , V.

Eigenvalue
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Spectrum Analysis

784 dimensional vectors

eigendecomposition ' )

—

NEEA

Eigenvalue Rank

Exercises:

1. Show that the eigenvalues of XX are always positive. Hint:
Use that \; = VIXTXV,.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) = "7, A\(A). Hint: First prove the cyclic
property of trace, that for any MN, tr(MN) = tr(NM) and
then apply this to A’s eigendecomposition
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- Many (most) datasets can be approximated via projection onto
a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV]||Z.
orthonormal V

- Greedy solution via eigendecomposition of X'X.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of data) is
determined by the tail of X'X's eigenvalue spectrum.
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Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated. SaAE

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
homen 5 3 450,000

Our compressed dataset is C = XV, where the columns of V,, are the
top k eigenvectors of X'X.

Observe that C'C = A,

C'Cis diagonal. l.e, all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

X,...,%: € RY data points, X € R"*9: data matrix, v4,...,¥%, € R top
eigenvectors of XTX, Vi, € R9%F: matrix with columns v, . . ., V.
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Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X'X requires O(nd?) time.
- Computing its full eigendecomposition to obtain vi, ..., V,
requires O(d°) time (similar to the inverse (X'X)~").

Many faster iterative and randomized methods. Runtime is roughly
O(ndR) to output just to top k eigenvectors v, . . . , V.
- Will see in a few classes (power method, Krylov methods).

- One of the most intensively studied problems in numerical
computation.

X1,...,% € R% data points, X € R"%%: data matrix, V,...,V, € R% top
eigenvectors of XX, V,, € Rk matrix with columns V4, . .. , V.
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