
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 17

1



Logistics

• Problem Set 3 is due Friday 11/17, 11:59pm.
• Questions about participation grade.
• Additional linear algebra review office hours – Monday
11/13 3:00-4:00pm.
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Basic Set Up

Reminder of Set Up: Assume that x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .

• XVVT gives the closest approximation to X with rows in V .

• The rows of XVVT are approximations to our input points in V .
The rows of XV are compressions of these approximate points. 3



Last Class

• V minimizing ∥X− XVVT∥2F is given by:

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XV∥2F

• This optimal V can be found greedily. Equivalently, by
computing the top k eigenvectors of XTX.

This Class:

• Finish up discussion of how optimal V is computed via
eigendecomposition.

• How do we assess the error of this optimal V.

• Connection to the singular value decomposition.
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Solution via Eigendecomposition

V maximizing ∥XV∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XV∥2F =
k∑

j=1

∥X⃗vj∥22 =
k∑

j=1

v⃗Tj XTX⃗vj

Can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

∥X⃗v∥22v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .
v⃗k = argmax

v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k
v⃗TXTX⃗v.

v⃗1, . . . , v⃗k are the top k eigenvectors of XTX by the Courant-Fischer
Principle.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 5



Review of Eigenvectors and Eigendecomposition

Eigenvector: x⃗ ∈ Rd is an eigenvector of a matrix A ∈ Rd×d if
A⃗x = λ⃗x for some scalar λ (the eigenvalue corresponding to x⃗).

• That is, A just ‘stretches’ x.
• If A is symmetric, can find d orthonormal eigenvectors
v⃗1, . . . , v⃗d. Let V ∈ Rd×d have these vectors as columns.

AV =

 | | | |
A⃗v1 A⃗v2 · · · A⃗vd
| | | |

 =

 | | | |
λ1⃗v1 λ2v⃗2 · · · λ⃗vd
| | | |

 = VΛ

Yields eigendecomposition: AVVT = A = VΛVT.
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Review of Eigenvectors and Eigendecomposition

Typically order the eigenvectors in decreasing order:
λ1 ≥ λ2 ≥ . . . ≥ λd.
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Low-Rank Approximation via Eigendecomposition
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F.

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Let v⃗1, . . . , v⃗k be the top k eigenvectors of XTX (the top k principal
components). Approximation error is:

∥X− XVkVTk∥2F = ∥X∥2F tr(XTX)− ∥XVkVTk∥2F tr(VTkXTXVk)

=
d∑
i=1

λi(XTX)−
k∑

i=1

v⃗Ti XTX⃗vi

=
d∑
i=1

λi(XTX)−
k∑

i=1

λi(XTX) =
d∑

i=k+1

λi(XTX)

• Problem Set: For any matrix A, ∥A∥2F =
∑d

i=1 ∥a⃗i∥22 = tr(ATA) (sum
of diagonal entries = sum eigenvalues).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of XTX) is:

∥X− XVkVTk∥2F =
d∑

i=k+1

λi(XTX)

• Choose k to balance accuracy/compression – often at an ‘elbow’.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Plotting the spectrum of XTX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
x⃗1, . . . , x⃗n are to a low-dimensional subspace).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Spectrum Analysis

Exercises:

1. Show that the eigenvalues of XTX are always positive. Hint:
Use that λj = v⃗Tj XTX⃗vj.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) =

∑n
i=1 λi(A). Hint: First prove the cyclic

property of trace, that for any MN, tr(MN) = tr(NM) and
then apply this to A’s eigendecomposition
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Summary

• Many (most) datasets can be approximated via projection onto
a low-dimensional subspace.

• Find this subspace via a maximization problem:

max
orthonormal V

∥XV∥2F.

• Greedy solution via eigendecomposition of XTX.

• Columns of V are the top eigenvectors of XTX.

• Error of best low-rank approximation (compressibility of data) is
determined by the tail of XTX’s eigenvalue spectrum.
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Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated.

Our compressed dataset is C = XVk where the columns of Vk are the
top k eigenvectors of XTX.

Observe that CTC = Λk

CTC is diagonal. I.e., all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

• Computing XTX requires O(nd2) time.

• Computing its full eigendecomposition to obtain v⃗1, . . . , v⃗k
requires O(d3) time (similar to the inverse (XTX)−1).

Many faster iterative and randomized methods. Runtime is roughly
Õ(ndk) to output just to top k eigenvectors v⃗1, . . . , v⃗k.

• Will see in a few classes (power method, Krylov methods).

• One of the most intensively studied problems in numerical
computation.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

16


