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- We released Problem Set 3 last night. It is due 11/17 at 11:59pm.

- Doing the first two Core Competency questions early might be
helpful if you need linear algebra review.



Last Class:

- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?*® for that subspace.

A
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rank approximation.

- Idea of approximating a data matrix X with XWW" when the data
points lie close to the subspace spanned by V's columns.



Last Class:

- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?*® for that subspace.

- View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

- Idea of approximating a data matrix X with XWW" when the data
points lie close to the subspace spanned by V's columns.

This Class:

- ‘Dual view’ of low-rank approximation: data points that can be
approximately reconstructed from a few basis vectors vs.
linearly dependent features.

-/ How to find an optimal orthogonal basis V € R%** to minimize
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R%, the data matrix can be written as

X = xvvf (implies rank(X) < k)

- W/ is a projection matrix, which projects the rows of X (the data
points X, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 4




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X~ XW/

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be apprommated as:
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X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V. .




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis¥ € R9** the data matrix can be approximated as:
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X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V. .




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X =~ XWW'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 6




Low-Rank Approximation

SV . . .
So Far: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
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This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

- Letting W'X, W'X; be the itg and j““rprojected data points,

W5 W = VWS, YAV = V5V

Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 6




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
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Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 6




Low-Rank Approximation

So Far: If X4,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X =~ XWW'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

- Letting W'X;, W'X; be the it" and ji" projected data points,
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l Key question is how to find the subspace V and correspondingly V.

Xi1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, ..., V. 6




Properties of Projection Matrices

Quick Exercise 1: Show that W' is idempotent. l.e,
(WNH(WT)y = (WT)y for any y € RY.
e
VW) VY
"
Wy
Quick Exercise 2: Show that VWW'(I — W') = 0 ( the projection is
orthogonal to its complement).
/\



Pythagorean Theorem

Pythagorean Theorem: For any orthonormal V e R?** and any
y e RY,
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A Step Back: Why Low-Rank Approximation?

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?
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Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis
of k vectors.



A Step Back: Why Low-Rank Approximation?
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Dual View of Low-Rank Approximation

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?



Dual View of Low-Rank Approximation

Question: Why might we expect X, ..., X, € R? to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.
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Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors| list price|sale price
home 1 2 2 1800 [ 2 | 200,000 | 195,000
home 2 4 25 2700 | 1 300,000 | 310,000
home n 5 35 (3600 3 | 450,000 | 450,000




Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

home 1
home 2

home n

/4

bedrooms| bathrooms| sq.ft.|floors
2 2 1800 | 2
4 2.5 2700 | 1
5 3.5 3600 3




Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

7

bedrooms, floors| list price|sale price
home 1 2 2 | 200,000 | 195,000
home 2 4 1 300,000 | 310,000

home n 5 3 | 450,000 | 450,000




Dual View of Low-Rank Approximation

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
N 10000* 10* ~

bedrooms, floors sale p%e

L

home 1 2 2 185,000
1 31(0)\000
home 2 & 2

home n 5 3 450,000




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.

1




Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivilantiy-\)2

Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find v (equw\{antly V)?
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k-dim. subspace V

Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.
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Best Fit Subspace

If X;

PR

X, are close to a k-dimensional subspace V with

orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.
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d-dimensional space H

k-dim. subspace V
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X1,...,% € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R%: orthogo-
nal basis for subspace V. V e RY%k: matrix with columns ¥, . ..
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?
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d-dimensional space

k-dim. subspace V

X1,...,% € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns V4, ... , V.
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with

orthonormal basis V € RY** the data matrix can be approximated as

XVV'. XV gives optimal embedding of X in V.
How do we find V (equivilantly V)?
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orthonormal VERA %k

d-dimensional space

k-dim. subspace V

X1,...,% € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns V4, ... , V.
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Solution via Eigendecomposition

V minimizing ||X — XWV'|Z is given by:

\ﬂ\“\\w\\‘ arg max ||xqu—ZHv 13

orthonormal VERIXk—""~
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X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 12




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
n R

argmax [IXV][E =D VX5 £ D IXV3

i=1

orthonormal VERI Xk

J=1

Surprisingly, can find the columns of V, V4,. .., V, greedily.

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 12




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
R

n
argmax [|[XV[[¢ = D IVIEE =D IXd13
i=1

orthonormal VERI* =1
Surprisingly, can find the columns of V, v, ..., V, greedily.

Vi = Jare ‘rlnﬁx [XV]2. = <X\/ M) ® \/TXTY\/
vV with ||v|[2=1

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 12




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
R

n
agmax[XV[2= SO VEIE = X3
orthonormal VERY Xk i=1 j=1

Surprisingly, can find the columns of V, V4,. .., V, greedily.

Vi = argmax V' X'XV.
7 with [[v]J,=1

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 12




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
R

n
argmax [XV[Z=) VXI5 =D IIXV[3
i=1

orthonormal VERIxk =1

Surprisingly, can find the columns of V, v, ..., V, greedily.
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Vo = arg max VIXTXV.

Fwith ||vl,=1, (V,7)=0

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 12




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
R

n
argmax [XVI[E =) VI =) IIXVll3
i=1 ——

orthonormal VERIxk =1
Surprisingly, can find the columns of V, V4,. .., V, greedily.

Vi = argmax V' X'XV.
7 with |v]l=1
Vo = arg max VIXTXV.
7 with [[v[=1, (V,7)=0

Vp = arg max VIXTXV.
P with [[v]l,=1, (7.7)=0 Vj<k

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 12




Solution via Eigendecomposition

V minimizing ||X — XWV'||2 is given by:
R

n
argmax [XV[Z=) VXI5 =D IIXV[3
i=1

orthonormal VERIxk =1
Surprisingly, can find the columns of V, V4,. .., V, greedily.

Vi = argmax V' X'XV.
7 with [[v]J,=1

Vo = arg max VIXTXV.
7with [|v],=1, (V,7)=0

M Ve = arg max VIXTXV.
Fwith |vl[.=1, (7.7)=0 Vj<k

Vi, are the top k eigenvectors o y the Courant-Fischer

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 12




