COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 16

Logistics

- We released Problem Set 3 last night. It is due 11/17 at 11:59pm.
- Doing the first two Core Competency questions early might be helpful if you need linear algebra review.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matr<u>ix X</u> with XVV^T when the data points lie close to the subspace spanned by V's columns.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix **X** with **XVV**^T when the data points lie close to the subspace spanned by **V**'s columns.

This Class:

• 'Dual view' of low-rank approximation: data points that can be approximately reconstructed from a few basis vectors vs. linearly dependent features.

How to find an optimal orthogonal basis $V \in \mathbb{R}^{d \times k}$ to minimize $\|X - XVV^T\|_F^2$. Such that $\|X - XVV^T\|_F^2$ has a sum of the property of the proper

Low-Rank Factorization

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
 (implies rank(X) $\leq k$)

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

d-dimensional space v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_8 $v_$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \underline{\mathbf{V}} \mathbf{V}^{\mathsf{T}}$$
 d-dimensional space

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as: k-dim. subspace ν Nx9 9xx Kx9 **Note:** XVV^T has rank k. It is a low-rank approximation of X. XVERNXK

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\| M \|_{F} = \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i,j}^{2}$$

$$\| M \|_{F}^{2} = \sum_{i=1}^{n} \| M_{i,j}^{2} \|_{2}^{2}$$

$$| M \|_{F}^{2} = \sum_{i=1}^{n} \| M_{i,j}^{2} \|_{2}^{2}$$

Note: XVV^T has rank k. It is a low-rank approximation of X. $XVV^T = \underset{B \text{ with rows in } \mathcal{V}}{\text{arg min}} \|X - B\|_F^2 = \sum_{i=1}^{K} (X_{i,j} - B_{i,j})^2.$

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to \mathbf{X} with rows in \mathcal{V} (i.e., in the column span of \mathbf{V}).

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace $\mathcal V$ with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^{T}$$
.

This is the closest approximation to X with rows in $\mathcal V$ (i.e., in the column span of V).

Letting
$$\underline{\mathbf{V}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i}$$
, $\underline{\mathbf{V}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i}$ be the i^{th} and j^{th} projected data points,
$$\|\underline{\mathbf{W}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i} - \mathbf{V}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i}\|_{2} = \|\underline{\mathbf{V}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i} - \underline{\mathbf{V}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i}\|_{2} = \|\underline{\mathbf{V}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i} - \underline{\mathbf{V}}_{i}^{\mathsf{T}}\underline{\mathbf{x}}_{i}\|_{2}.$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

Letting
$$\mathbf{V}^T \vec{x}_i$$
, $\mathbf{V}^T \vec{x}_j$ be the i^{th} and j^{th} projected data points, $\mathbf{V}^T \vec{x}_i$
$$\|\mathbf{V}\mathbf{V}^T \vec{x}_i - \mathbf{V}\mathbf{V}^T \vec{x}_j\|_2 = \|\mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_j\|_2 = \|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2$$
.

• I.e., we can use the rows of $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

Letting
$$\mathbf{V}\mathbf{V}^T\vec{x}_i$$
, $\mathbf{V}\mathbf{V}^T\vec{x}_j$ be the i^{th} and j^{th} projected data points,
$$(|\mathbf{V}\mathbf{V}^T(\mathbf{x},\mathbf{x}')|_{\mathbf{V}\mathbf{V}^T}\mathbf{X}_i - \mathbf{V}\mathbf{V}\mathbf{V}^T\mathbf{X}_i - \mathbf{V}\mathbf{V}\mathbf{V}\mathbf{X}_i - \mathbf{V}\mathbf{V}\mathbf{V}\mathbf{X}_i - \mathbf{V}\mathbf{V}\mathbf{X}_i - \mathbf{V}\mathbf{X}_i - \mathbf{V}\mathbf{X}_$$

Key question is how to find the subspace ${\cal V}$ and correspondingly ${f V}$

Properties of Projection Matrices

Quick Exercise 1: Show that W^T is idempotent. I.e., $(\mathbf{V}\mathbf{V}^T)(\mathbf{V}\mathbf{V}^T)\vec{y} = (\mathbf{V}\mathbf{V}^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: Show that $\underline{VV^T}(I-VV^T)=0$ (the projection is orthogonal to its complement).

Pythagorean Theorem

Pythagorean Theorem: For any orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^d$,

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of *k* vectors.

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of k vectors.

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		
home 1	2	2	1800	2	200,000	195,000		
home 2	4	2.5	2700	1	300,000	310,000		
				•				
				•	•			
		•						
nome n	5	3.5	3600	3	450,000	450,000		

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

					//		
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
		•		•			
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
home n	5	3.5	3600	3	450,000	450,000	

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables: bedrooms bathrooms sq.ft. floors list price sale price home 1 195.000 2 200.000 300,000 310.000 1 home 2 3 450,000 450,000 home n

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq,ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2/700	1	300,000	310,000	
			,			/ \	
•		•		•	•	•	
•	•	•	•	•	•	•	
•		•	•	•	•	•	
home n	5	3.5	3600	3	450,000	450,000	

If $\vec{x}_1, \dots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X}\mathbf{V}\mathbf{V}^T$. $\mathbf{X}\mathbf{V}$ gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace $\mathcal V$ with orthonormal basis $\mathbf V \in \mathbb R^{d \times k}$, the data matrix can be approximated as $\mathbf X \mathbf V \mathbf V^T$. $\mathbf X \mathbf V$ gives optimal embedding of $\mathbf X$ in $\mathcal V$.

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace $\mathcal V$ with orthonormal basis $\mathbf V \in \mathbb R^{d \times k}$, the data matrix can be approximated as $\mathbf X \mathbf V \mathbf V^T$. $\mathbf X \mathbf V$ gives optimal embedding of $\mathbf X$ in $\mathcal V$.

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{T}\vec{\mathbf{X}}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \|\mathbf{X}\vec{\mathbf{V}}_{j}\|_{2}^{2}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{i=1}^n \|\mathbf{V}^\mathsf{T}\vec{x}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \mathop{\arg\max}_{\vec{v} \text{ with } \|v\|_2 = 1} \|X\vec{v}\|_2^2. \ \ \text{$\stackrel{<}{=}$} \ \left\langle \chi_{\bigvee_1} \chi_{\bigvee} \right\rangle \ \text{$\stackrel{<}{=}$} \ \bigvee^{\intercal} \chi^{\intercal} \chi_{\bigvee}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{i=1}^n \|\mathbf{V}^\mathsf{T}\vec{x}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2=1}{\text{arg max}} \vec{v}^T X^T X \vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{i=1}^n \|\mathbf{V}^\mathsf{T}\vec{\mathbf{x}}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{V}_1 = \underset{\vec{V} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{V}^T X^T X \vec{V}. \qquad \qquad \left\| \left\langle \chi \right\rangle_{\mathbf{Z}} \right\|_{\mathbf{Z}}^{\mathbf{Z}} \leq \left\| \left\langle \chi \right\rangle_{\mathbf{I}} \right\|_{\mathbf{Z}}^{\mathbf{Z}}$$

$$\vec{V}_2 = \underset{\vec{V} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{V}^T \mathbf{X} \vec{V}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{X}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2=1}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

=1, (v,v₁)=0

$$\vec{V}_k = \underset{\vec{V} \text{ with } ||V||_2 = 1, \ \langle \vec{V}, \vec{V}_i \rangle = 0 \ \forall j < k}{\text{arg max}} \vec{V}^\mathsf{T} \mathbf{X} \vec{V}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{i=1}^n \|\mathbf{V}^\mathsf{T} \vec{\mathbf{X}}_i\|_2^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{V}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T X^T X \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T X^T X \vec{v}.$$

$$\vec{V}_k = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0}{\text{arg max}} \vec{v}^T X^T X \vec{v}.$$

 $\vec{v}_1, \dots, \vec{v}_k$ are the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ by the Courant-Fischer Principle.