COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 15

Logistics

- · Midterm grades and solutions are posted on Moodle.
- · We'll hand out the midterms at the end of class.
- The class average was $\approx 30/39 = 77\%$.

See Piazza post for more details. If you aren't happy with your grade, I'm happy to chat about strategies moving forward.

Quiz Question

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 \delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)
- Proved via the distributional JL-Lemma which shows that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix, $\Pi \vec{y}_2 \approx \|\vec{y}\|$ for any y with high probability.
- Proof of distributional JL via linearity of expectation, linearity of variance, stability of the Gaussian distribution, and an exponential concentration bound for Chi-Squared random variables.

Summary

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimersional data points to a smaller dimension m.
- Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

d-dimensional space

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\underline{\mathbf{V}} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace V of \mathbb{R}^d .

d-dimensional space V ($C_1 - C_2$) $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_3 - C_2$ $C_4 - C_2$ $C_1 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_3 - C_2$ $C_4 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_1 - C_2$ $C_2 - C_2$ $C_2 - C_2$ $C_3 - C_2$ $C_4 - C_2$

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

$$\begin{array}{c} V^T \in \mathbb{R}^{k \times d} \text{ is a linear embedding of } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } k \text{ dimensions } \vec{x}_1, \ldots, \vec{x}_n \text{ into } \vec{x}_1, \ldots, \vec{x}_n \text{ in$$

Dot Product Transformation

Claim: Let
$$\vec{v}_1, \ldots, \vec{v}_k$$
 be an orthonormal basis for \vec{v} and $\vec{v} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \vec{V}$:

$$|\vec{v}_i||_2 = |\vec{v}_i||_2 = |\vec{v}_i - \vec{v}_j||_2 = |$$

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\underline{\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k}$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

How do we find $\mathcal V$ and $\mathbf V$?
How good is the embedding?

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\underline{\vec{x}_i} = \underline{V\vec{c}_i} = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V, can write \vec{x}_i as:

$$\vec{x}_i = V\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$

• So $\vec{v}_1, \dots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.

• Every data point \vec{x}_i (row of X) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

 $\vec{x}_1, \dots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

• Every data point \vec{x}_i (row of X) can be written as

 $\vec{x}_1, \dots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

• Every data point \vec{x}_i (row of **X**) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

• X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

• Every data point \vec{x}_i (row of X) can be written as $\vec{x}_i = V\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.

The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

Exercise: What is this coefficient matrix C? Hint: Use that $V^TV = I$.

$$X = CV^T$$
 $XV = CV^TX^T$ XV^{-1}

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

Exercise: What is this coefficient matrix **C**? Hint: Use that $V^TV = I$.

$$\bullet \ \ \overrightarrow{X = CV^{T}} \Longrightarrow \ XV = CV^{T}V$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^TV = I$.

$$\cdot X = CV^{T} \implies XV = CV^{T}V \implies XV = C$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

Exercise: What is this coefficient matrix **C**? Hint: Use that $V^TV = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X}\mathbf{V}$ $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{X} \mathbf{V} \mathbf{V}^T.$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• \mathbf{W}^T is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects vectors onto the subspace \mathcal{V} .

Low-Rank Approximation

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

d-dimensional space

Low-Rank Approximation

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$

Note: XVV^T has rank k. It is a low-rank approximation of X.