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- Midterm grades and solutions are posted on Moodle.

- We'll hand out the midterms at the end of class.

- The class average was ~ 30/39 = 77%.

See Piazza post for more details. If you aren’t happy with
your grade, I'm happy to chat about strategies moving
rward.



Question 5 Suppose x=(1,2,3,4) and let y=(y1,y2,y3,Y4) be a random vector where each y; is

Not complete independent and is distributed according to a Normal distribution with mean 0 and
Points out of variance 1. What is the expected value of (x, y)z?
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Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to O (M)
dimensions and preserve (with probability > 1— §) all pairwise
distancesupto1=+e.

[T

- Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

- Proved via the distributional JL-Lemma which shows that if
N € R™* is a random matrix, My, = ||y|| for any y with high
probability.

- Proof of distributional JL via linearity of expectation, linearity of
variance, stability of the Gaussian distribution, and an

exponential concentration bound for Chi-Squared random
. —_
variables.
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Next Few Classes: Low-rank approximation, the SVD, and principal
component analysis (PCA)}

- Reduce d-dimesional data points to a smaller dimension m.
- —_-

- Like JL, compression is linear — by applying a matrix.

- Chose this matrix carefully, taking into account structure of the
dataset.

- Can give better compression than random projection (although
not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc.



Embedding with Assumptions

Assume that data points X, ..., X, lie in any k-dimensional subspace
V of RY.
X

d-dimensional space

k-dim. subspace V



Embedding with Assumptions

L
Assume that data points X, ..., X, lie in any k-dimensional subspace
4 of R%’L d-dimensional space
R__\ .
Xi = GV QY- Gk
Y

\/k k-dim. subspace V

Claim: Let Vy.....V, be an orthonormal basis for V and V € R?<F be
_— -

the matrix with these vectors as its columns. For all X;, X;:

VX = VX[l = 1% = X2
~
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Embedding with Assumptions

Assume that data points X, ..., X, lie in any k- d|men5|onal sub Te

V of RY. d-dimensional space \/ CC‘ (j’>“gy C‘ C)

A
. k \“T"\ f k-dim. subspace V
e (PRCD)- Fode

Claim: Let Vi, ..., V, be an orthonormal basis for V and V € R¥*F pe
the matrix with these vectors as its columns. For all X;, X;:

VX = VX[l = 1% = X[l

- VT e RF*d isalinearembeddin of X1,..., X, into k dimens;j
with no distortion. ) = %T C e
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Dot Product Transformation
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

k-dim. subspace V
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Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

k-dim. subspace V

Letting Vi, ..., Vx be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns, V'X; € R* is still a good
embedding for x; € RY,



Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

k-dim. subspace V

Letting Vi, ..., Vx be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns, V'X; € R* is still a good
embedding for x; € RY. The key idea behind low-rank approximation
and principal component analysis (PCA).



Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of R
d-dimensional space

k-dim. subspace V

Letting Vi, ..., Vx be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns, V'X; € R* is still a good

embedding for x; € RY. The key idea behpnd low-rank approximation
and principal component analysis (PCA).

.%( How do we find V and V?
g HOQ/ good is the embedding? 3



Low-Rank Factorization

Claim: X, ... ,)?,Ni% in a k-dimensional subspace V < the data
matrix X € R4 has rank < k.

R

— +
|
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n =T L \/m%@)ék

Ka —
X,..., % € RY: data points, X € R"*?: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
9




Low-Rank Factorization

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R4 has rank < k.

Letting Vi, ..., V, be an orthonormal basis for V, can write X; as:

)?,':V(?,':C,'J~\71+C,'72-\72+...+C;A¢?-\7k.
A Rt ;

r d dimensions

- N
X ‘Ci,1*z vy

— ~A +
n data points— X Ci,2*f v, ’\ +
: +
o Gl
X,..., % € RY: data points, X € R"*?: data matrix, ¥, . .., V, € R orthogo-

nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.




Low-Rank Factorization

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data

matrix X € R4 has rank < k.

- Letting Vi, ...,V be an orthonormal basis for V, can write X; as:

)?,':V(?,':C,'J ~\71+C,'72-\72+...+Cu?-\7k.
- So V,..., Vg span the rows of X and thus rank(X) < k.

r d dimensions
X" =Ci,1*] vy /_) +
n data points— X Cio+ v, —) +
+
Ci’k'C- v \’)
X,..., % € RY: data points, X € R"*?: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
9




Claim: X;,..., X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(',‘ZVE,‘IC,'J -\71+...+c,<7k'\7k.




Claim: X;,..., X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™9 has rank < k.

+ Every data point X (row of X) can be written as
)_(',‘ZVE,‘IC,'J '\71+...+c,<7k'\7k.

k parameters | .
P \ d dimensions
[ \ T 1

NETALY,
(Na) = €V
N

n data points
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Claim: X;,..., X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(',‘ZVE,‘IC,'J -\71+...+c,<7k'\7k.

k arameters
P d dlmenS|ons

o . I

- X can be represented by (n + d) - k parameters vs. n - d.

L
Ci's \/




Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"™9 has rank < k.

- Every data point X; (row of X) can be written as
)_(’,':V(__",':C,‘J-\7'1+...+Ci7h-\7;?.
k parameters

d dimensions
) ——

Pl = < /\l) i
-

i
n data points XJ X C

v/
—

X can be represented by (n 4+ d) - k parameters vs. n - d.

1 The rows of X are spanned by k vectors: the columns of V. =

the columns of X are spanned by k vectors: the columns of C.

Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥, ...,V, €
RY: orthogonal basis for V. V € R¥*k: matrix with columns V4, . .. , V.




Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

vT
XiT - ciT
n data points X C
X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € R¥** the data matrix can be written as X = CV'.
e
1 kar:nleters k'Xé
1 .= Q\ d dimensions
\l N ———
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Q L n data points X (o
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Exercise: What is this coefficient matrix C? Hint: Us%that Vv = I.
_ T _ <
X oV VAR WN=C

X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.

1



Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

\i

X! =

n data points X C

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

cX=0V = Xv=CV'v

—_

X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.
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Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

\i

X! =

n data points X C

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

1
X=0v = xvzcvya:> XV =_C

X1,...,%, € RY: data points, X € R"%%: data matrix, ¥, ..., V, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V.

1



Low-Rank Factorization

Claim: If X;,..., X, lie in a k-dimensional subspace with orthonormal
basis V € RY** the data matrix can be written as X = CV'.

—
XiT CiT
n data points X (o

k parameters

Exercise: What is this coefficient matrix C? Hint: Use that VIV = I.

cX=CV = XV=CV'V = XV-=_C

X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € Rk the c)j(zé/ta matrix can be written as

X=cV.

L

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V.
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € Rk the dafg,matrix can be written as

X = XW. VI

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V.
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
X = XwW'.

- W/ is a projection matrix, which projects vectors onto the
subspace V.

X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-
nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 9




Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9**, the data matrix can be written as
X = XW'.
e
- W/ is a projection matrix, which projects vectors onto the
subspace V.
d-dimensional space
12 V2
O
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
X = XwW'.

- W/ is a projection matrix, which projects vectors onto the
subspace V.

d-dimensional space

dxd Ix)

\/;*\
W

k-dim. subspace V

J
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Projection View

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9*<* the data matrix can be written as
X = XwW'.

- W/ is a projection matrix, which projects vectors onto the

subspace V.
d-dimensional space
k-dim. subspace V
X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-

nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 9




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with

orthonormal basis V € R9** the data matrix can be approximated as:
-—
X ~ X'

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.
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Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with

orthonormal basis V € R9** the data matrix can be approximated as:

X ~ XV’

d-dimensional space

k-dim. subspace V

Note: XVVT has rank k. It is a low-rank approximation of X.

X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V.
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