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Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 14



- We will be grading the exams this upcoming week.

- We will release solutions shortly — we still have some students
taking make up exams.

- Feel free to ask about the questions in office hours.
- Problem Set 3 will be released next week.
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Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction. M - 0( Ig;)\'_v
-[Intro to low-distortion embeddings and the |L Lemma. e

- Reduction of JL Lemma to the Distributional JL Lemma.
— —\.



Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma
- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

+ Proof the Distributional JL Lemma.

- Example application of JL to clustering.



Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma
- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.

- Reduction of JL Lemma to the Distributional JL Lemma.
This Class:

- Proof the Distributional JL Lemma.
(_- Example application of JL to clustering.

Next Few Classes:
- Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.
</ This would be a good time to review your linear algebra — matrix
multiplication, dot products, subspaces, orthogonal projection,
— T
tc. See schedule tab for resources. D 3



Distributional JL

The Johnson-Lindenstrauss Lemma is a dir ct consequence of a
closely related lemma: T jm_(

f CJ
Distributional JL Lemma: Let M € RZX< have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ('°g(1/5 ) then for any

y € RY, with probability >1—§
(1=l < |||'|)/||2 (1+ &)l

.

Applying a random matrix I to any vector y preserves y's norm with
high probability.

- Like alow-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

- Will prove today from first principles.

N e R™*%: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing.

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.
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Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing.

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.
- Ifwe chooseM: 0 % , for each yj; with probability

>1—¢" we have: PR

(M- 6)Hy11||2 < ||r|ylj||2 (1+ 6)|D/U||z

X1, ..., %n: original points, X, . .., Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing.

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.
- If we choose Mwith m = 0 (%) fo/[each Vi with probability
>1— 4" we have: M, -qu /
(1= X = Xll2 <IN — X))l < (T + 1K = Xl
— \

X1, ..., %n: original points, X, . .., Xn: compressed points, M € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing.

Proof: Given Xy, ..., X,, define (1) vectors yj; where y; = X; — Xj.
- If we choose Mwith m = 0 (%) for each y; with probability
>1— 4" we have:

(1=K = Xlla < 1% = X[l < (T + 1% = Xl
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projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.




Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection I preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Sincel is linear these are the same thing. PFCUEJ> i?ﬁ 'D

Proof: Given Xi,...,X,, define (}) vectors y; where y; = X; — Xj. = "‘)
w':x If we choose M with m = 0 (eel/% )) for each y,, vv|th probabﬂ v “

To R Gg-vwehave  Ck :g 1/ ol )

o
\\%;JP 0\( N =%l < 15Kl < (1 + %~ Kl
0 -
Setting ¢’ = (5 by a union bound, this holds simuttanieously for
all %, X With proEab| eaft\ 5 : m = O('e ”/‘5)), Biving the JL
Lemma. 63%7
X1,...,Xn: original points, X, ..., Xn: compressed points, M € RM*4: random

projection matrix. d: original dimension‘ m: compressed dimension, e: em-
bedding error, §: embedding failure prob.




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as N(0,1/m). If we set m = O (M) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 6




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Let y denote My and let I'I( ) denote the ji row of M.
/"\
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¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 6




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.
- Foranyj, y(j 1),

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 6




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any

v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let N(j) denote the j row of M.

- Forany J, y()) = (0()),)
_/\ n y
[ g w| . [%
01-12 34 67 10 —.49.. Y2 -
Y3
v

Ya

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob. 6




Distributional JL Proof

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
seniid. as M(0,1/m). If we setm = O ('°g“/5 ) then for any
v € RY with probability > 1 -6

(1=l < INYll2 < (1+ &)I¥l2

- Lety denote I'Iy and let I'I( ) denote the ji row of M.

- For any j, y(j) wwhere g ~N(O 1/m).
Dl»} 34.:170 10 —.49.. ;:

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*%9: random
projection. d: original dim. m: compressed dim, e: error, é: failure prob.




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
. Forany;y ),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
—_——

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 7




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.

- For any j, y(j) ),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
— 5

- g -y(i) ~ N(0, M): normally distributed with variance %

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 7




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.

- For any j, y(j) )9 =% g - §(i) where g ~ N'(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

i 1 y(®?
variance variance —=—

m 1 m
[ \ I 1

VANV AN

gi gi-y()

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 7




Distributional JL Proof

-Letydenouaﬂyandletﬂ()denomthefhrmNofﬂ
- For any j, y(j) ),V) = Engr V(i) where g; ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

varlance ()2 m varianceyT
L
A+/\+ - AN

Y@ =191y + g2 y(2) + .. + gn-y(d)]

e J\( (O]{%wg%g : N(OJ lbh¥>

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j) ),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

2 .
variance £ ™ variance -

e T ——

A+/\+ j\

Yy =g -y + g2 y(2) + ... + gn-y(d)]

What is the distribution of y(j)?

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




Distributional JL Proof

- Lety denote I'Iy and let N(j) denote the j row of M.
- For any j, y(j) ),V) = Z, 18 - Y(i) where g ~ N(0,1/m).
- g -y(i) ~ N(0, y%)): normally distributed with variance V(T’?

y(2)?
variance —— (@2

2 .
variance £ ™ variance -

e T ——

A+/\+ j\

Yy =g -y + g2 y(2) + ... + gn-y(d)]

What is the distribution of y(j)? Also Gaussian!

¥ € RY arbitrary vector, y € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:

d -
70) = Y- & 50) where g ) ~ v (0.5
=1

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+b~N(u+ p, 0%+ 03)

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and:

d oy
S =N g o y(i)?
Y() =Y _ g - y(i) where g; - J(i) ~ N (o, m> .

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

VANYINLIVANS

¥ € R® arbitrary vector, j € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j),y) and:
s (i)’
70) = Y- & 50) where g ) ~ v (0.5

i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N+ p2, 07 + 03)

Thus, ¥(j) ~ N(0, 7%)2 /C) T V(d)z)

m
e

—

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting ¥ = My, we have y()) j),y) and: C/l\7 j [\3]

m

Zg, ) where g; - J(i) ~ N (O, y(i) > . 5

Stability of Gaussian Random Variables. For independent a ~
N(p1,0?) and b ~ N (uz, 02) we have:

a+ b~ N + p, 0 + 03)

Thus,ﬂvo)wwo,ix) @(L-i)(l )Q! (*0]

P—

[0l ¢ %ml)ﬁ(m))v)})

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), ) and: g
_ ELD L4
pal B

Zg, ) where g; - (i) ~ N(O,y(l)>
’<\X)

Stability of Gaussian Random Variables. For independent an~

N(m,0?) and b ~ N(pa,03) we have: (—/\ \j (g]

a+b~ N(u1+uz,o’1+az) /

\%yj

\.

Thus, y(j) ~ N (0, %) l.e., yitself is a random Gaussian vector.
Rotational inVariance of the Gaussian distribution.

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y{) ~ N (O, [¥l15/m).
—_—

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof
mx

So far: Letting M € R have each entry chosen i.i.d. as A(0,1/m),
forany y € RY, letting y = Ny:

(66) Bt
SO @w(o,llﬂlé/m)- Ve )>>_J f))
What is E[Hszp - H:S )

—C T [i am { E(&QJ O

A Z[j £ b

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:
Y (i) ~ N (O, [I71I3/m).
What is E[|[§2]?
m
E[|y|l5] = E V(j)?
[1913] ;y(/)

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[I915] = E | > _¥0)*| =D E[()]
j=1 j=1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, |73/m).
What is E[||§|2]?

E[I15] = E | Y _¥0)*| = > EF()]
j=1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m)
forany y € RY, letting y = My

§(j) ~ N0, [713/m).
What is E[||§|2]?

NaAYD)
E[Iy]5] = E zf:x?(j)z

I
M3

E[§()7]
\ -
Goolm) g
J=1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

E[I915] = E | > _¥0)*| =D E[()]
j=1 =1

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||y3]?

ENFE =E |S 907 | = 3 EF0)]
j=1 =
—Z W _ 5

—_—

So y has the right norm in expectation.
ﬁ

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

§(j) ~ N0, [713/m).
What is E[||§|2]?

B =B | S 907 = 3 B0
j=1 j=1
= Wy
=1

So y has the right norm in expectation.

How is ||y]|3 distributed? Does it concentrate?

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y() ~ N0, [I7ll2/m) and E[|[y[5] = (1713

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob. 10




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

T - - .
S YO ~ N, I7113/m) and E[Iy12] = [1713
V113 = S, ¥(j)? a Chi-Squared random variable with m degrees of
Treedom (a sum of m squared independent Gaussians)

(ﬂb\,\:éi‘

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob. 10




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N(0, [I¥[15/m) and E[I§|I5] = [IVI5

19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

fulz) v

0.5

O

0.4

0.3

Ol O R
| L L

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, 6: embedding failure prob.




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N(0, [I¥[15/m) and E[I§|I5] = [IVI5
19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

<

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr[|Z— EZ| > EZ] < 2e~M<'/8,

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m), )
for any y € RY, letting y = My: \ S\,\Jy\\h S

Y0) ~ N (O I7l5/m) and E[I¥I3] = I¥13

19112 = >, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians) @\L

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-

Squared random vari hqwﬂiw m)_gegrees of freedom e (
/
Prilz=EZ| > ¢ 2] <2e”Me/t N

If we set m = O ( '°8l}/%) ) with probability 1 — O(e~'08(1/9)) > 1 — 6

N

(1= IVIz < 1911z < (0 + €)lIYI3-

¥ € R® arbitrary vector, y € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny:

y(j) ~ N (0, [I¥1I3/m) and E[|[§[I3] = IV]l3
19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr[|Z — EZ| > EZ] < 2e~M<'/8,

If we setm =0 <'°g 1/2) ) with probability 1— O(e~'0&(1/%)) > 1 — §:

(1=l < I¥lI2 < (14 e)I¥ll5-
Gives the distributi mma and thus the classic J@




Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.
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Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

e
.]]. '. 13

o
k2 o
P ([
o
k-means Objective: Cost(C;, . .. = min, Z > UK = 3.

—’—‘J 1 XeC, ~ —~

1



Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups

o
B
/

k-means Objective: Cost(Cy, .

Write in terms of distances:

= min Zan—mnz.

1 1 XeCy,
J

= m|n Z Z X7 — Xa |3
o ==

Cost(Cy,...,C
/ 1 X,%€Ck

1



Example Application: k-means clustering

k
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If we randomly project twdmensmns for all pairs X, X,

(1= )% = Xoll5 < 1% = %oll3 < (1 + ©)[I%0 — Lol =

Letting Cost(Cy, ..., C) = Zmin, Z > IK = %o
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J 1 X1, %2 €Cp
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Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Jmin Z > IK =%l

I =1 X%,%€Cy,

If we randomly projecttom =0 ('°g”) dimensions, for all pairs X, X,

(=l =%k <K% <+ - %l =
¢ €
Letting Cost(Cy, ..., C) = murzjkz > IK = %o //M

J=1 X1, %2 €C

(1—¢€)Cost(Cy,...,Ck) < Cost(Cr,...,Cr) < (1+¢€)Cost(Cy, ..., Cr).

Upshot: Can cluster inm pace (much more
efficiently) and minimizé | The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good

exercise to pwws -
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