
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 14

1

Logistics

• We will be grading the exams this upcoming week.
• We will release solutions shortly – we still have some students
taking make up exams.

• Feel free to ask about the questions in office hours.
• Problem Set 3 will be released next week.

2

• Qu i t doe Monday.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

• Intro to dimensionality reduction.

• Intro to low-distortion embeddings and the JL Lemma.

• Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

• Proof the Distributional JL Lemma.

• Example application of JL to clustering.

Next Few Classes:

• Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.

• This would be a good time to review your linear algebra – matrix
multiplication, dot products, subspaces, orthogonal projection,
etc. See schedule tab for resources.

3

C - # ¥ ¥)

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

• Intro to dimensionality reduction.

• Intro to low-distortion embeddings and the JL Lemma.

• Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

• Proof the Distributional JL Lemma.

• Example application of JL to clustering.

Next Few Classes:

• Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.

• This would be a good time to review your linear algebra – matrix
multiplication, dot products, subspaces, orthogonal projection,
etc. See schedule tab for resources.

3

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

• Intro to dimensionality reduction.

• Intro to low-distortion embeddings and the JL Lemma.

• Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

• Proof the Distributional JL Lemma.

• Example application of JL to clustering.

Next Few Classes:

• Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.

• This would be a good time to review your linear algebra – matrix
multiplication, dot products, subspaces, orthogonal projection,
etc. See schedule tab for resources. 3

C

[- a

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2.

Applying a random matrix Π to any vector !y preserves !y’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Will prove today from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ε: embedding error, δ: embedding failure prob. 4

[FILTH

1 - ÷

= .

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

vspace-1em

Setting δ′ = δ/
(n
2
)
, by a union bound, this holds simultaneously for

all !xi,!xj with probability at least 1− δ for m = O(log(n/δ)ε2), giving the JL
Lemma.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob.

5

* i .I - -

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

• If we choose Π with m = O
(

log 1/δ′
ε2

)
, for each !yij with probability

≥ 1− δ′ we have:

(1− ε)‖!yij‖2 ≤ ‖Π!yij‖2 ≤ (1+ ε)‖!yij‖2

Setting δ′ = δ/
(n
2
)
, by a union bound, this holds simultaneously for

all !xi,!xj with probability at least 1− δ for m = O(log(n/δ)ε2), giving the JL
Lemma.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob.

5

[i - H

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

• If we choose Π with m = O
(

log 1/δ′
ε2

)
, for each !yij with probability

≥ 1− δ′ we have:

(1− ε)‖!xi −!xj‖2 ≤ ‖Π(!xi −!xj)‖2 ≤ (1+ ε)‖!xi −!xj‖2

Setting δ′ = δ/
(n
2
)
, by a union bound, this holds simultaneously for

all !xi,!xj with probability at least 1− δ for m = O(log(n/δ)ε2), giving the JL
Lemma.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob.

5

Tiki-Tix;-Ii
- -

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

• If we choose Π with m = O
(

log 1/δ′
ε2

)
, for each !yij with probability

≥ 1− δ′ we have:

(1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1+ ε)‖!xi −!xj‖2

Setting δ′ = δ/
(n
2
)
, by a union bound, this holds simultaneously for

all !xi,!xj with probability at least 1− δ for m = O(log(n/δ)ε2), giving the JL
Lemma.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob.

5

Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

• If we choose Π with m = O
(

log 1/δ′
ε2

)
, for each !yij with probability

≥ 1− δ′ we have:

(1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1+ ε)‖!xi −!xj‖2

Setting δ′ = δ/
(n
2
)
, by a union bound, this holds simultaneously for

all !xi,!xj with probability at least 1− δ for m = O(log(n/δ)ε2), giving the JL
Lemma.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob.

5

-
Pr(UTi;)'.§PrlEi;)

-

¥ 8
¥1;÷j¥
¥"

"xn¥=db¥D
•0 1 -

I t a g g e d

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 6

[

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 6

Eigijin

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 6

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉

=
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m)

.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 6

→
i f

Distributional JL Proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ε: error, δ: failure prob. 6

-

I - -

Distributional JL Proof

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

• gi ·!y(i) ∼ N (0, #y(i)
2

m): normally distributed with variance #y(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 7

- -

Distributional JL Proof

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

• gi ·!y(i) ∼ N (0, #y(i)
2

m): normally distributed with variance #y(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 7

→

-

Distributional JL Proof

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

• gi ·!y(i) ∼ N (0, #y(i)
2

m): normally distributed with variance #y(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 7

=

Distributional JL Proof

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

• gi ·!y(i) ∼ N (0, #y(i)
2

m): normally distributed with variance #y(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

7

D I N (O,'¥t¥I±¥: N(O, "¥)

Distributional JL Proof

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

• gi ·!y(i) ∼ N (0, #y(i)
2

m): normally distributed with variance #y(i)2
m .

What is the distribution of y(̃j)?

Also Gaussian!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

7

Distributional JL Proof

• Let ỹ denote Π!y and let Π(j) denote the jth row of Π.

• For any j, y(̃j) = 〈Π(j),!y〉 =
∑d

i=1 gi ·!y(i) where gi ∼ N (0, 1/m).

• gi ·!y(i) ∼ N (0, #y(i)
2

m): normally distributed with variance #y(i)2
m .

What is the distribution of y(̃j)? Also Gaussian!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

7

Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

8

Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

8

E -

Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

8

Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, #y(1)
2

m +
#y(2)2
m + . . .+

#y(d)2
m)

I.e., ỹ itself is a random
Gaussian vector. Rotational invariance of the Gaussian distribution.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

8

- -

Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, ‖#y‖2
2

m)

I.e., ỹ itself is a random Gaussian vector.
Rotational invariance of the Gaussian distribution.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

8

crappy:$.

M f-e)"yll.at/Tyl1zsltDllyll- $4411511#11%-1124+01151
1

Distributional JL Proof

Letting ỹ = Π!y, we have ỹ(j) = 〈Π(j),!y〉 and:

ỹ(j) =
d∑

i=1

gi ·!y(i) where gi ·!y(i) ∼ N
(
0,

!y(i)2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1,σ2

1) and b ∼ N (µ2,σ2
2) we have:

a+ b ∼ N (µ1 + µ2,σ
2
1 + σ2

2)

Thus, ỹ(j) ∼ N (0, ‖#y‖2
2

m) I.e., ỹ itself is a random Gaussian vector.
Rotational invariance of the Gaussian distribution.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

8

Cates

ftp.gqyjlil,
- -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2




=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

-

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2




=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

I i

5*29215
,

-

Varty'D"¥§
¥§<$61,545):E.FIGHT 8cig,j.fi#..iE*ms

HI

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2




=
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

- .

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2


 =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2


 =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2


 =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

i n551)

gi-N(O,tn)
,

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2


 =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2


 =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

= .

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m).

What is E[‖y‖̃22]?

E[‖ỹ‖22] = E




m∑

j=1

ỹ(j)2


 =
m∑

j=1

E[ỹ(j)2]

=
m∑

j=1

‖!y‖22
m

= ‖!y‖22

So ỹ has the right norm in expectation.

How is ‖ỹ‖22 distributed? Does it concentrate?

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

9

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22

‖y‖̃22 =
∑m

i=1 y(̃j)2 a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 10

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22
‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 10

gossip

- -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22
‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 10

-

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22
‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ εEZ] ≤ 2e−mε2/8.

If we set m = O
(

log(1/δ)
ε2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ε)‖!y‖22 ≤ ‖y‖̃22 ≤ (1+ ε)‖!y‖22.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 10

f - -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22
‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ εEZ] ≤ 2e−mε2/8.

If we set m = O
(

log(1/δ)
ε2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ε)‖!y‖22 ≤ ‖y‖̃22 ≤ (1+ ε)‖!y‖22.

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob. 10

I s

"subgaussi
an"

-

- -idetitriate,

1151122-light

- - -
--2£''"¥%

A t e
- -

Distributional JL Proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any !y ∈ Rd, letting ỹ = Π!y:

y(̃j) ∼ N (0, ‖!y‖22/m) and E[‖ỹ‖22] = ‖!y‖22
‖y‖̃22 =

∑m
i=1 y(̃j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ εEZ] ≤ 2e−mε2/8.

If we set m = O
(

log(1/δ)
ε2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ε)‖!y‖22 ≤ ‖y‖̃22 ≤ (1+ ε)‖!y‖22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

#y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping #y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ε: embedding error, δ: embedding failure prob.

10i O S T

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x∈Ck

‖!x− µj‖22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

11

80

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x∈Ck

‖!x− µj‖22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

11

¥1 I

- -

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x∈Ck

‖!x− µj‖22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22
11

"Ig!: :

§

3

-

C -

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

If we randomly project to m = O
(

log n
ε2

)
dimensions, for all pairs !x1,!x2,

(1− ε)‖!x1 −!x2‖22 ≤ ‖x̃1 − x̃2‖22 ≤ (1+ ε)‖!x1 −!x2‖22

=⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

‖x1̃ − x̃2‖22

(1− ε)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ε)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cε times the true optimal. Good
exercise to prove this.

12

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

If we randomly project to m = O
(

log n
ε2

)
dimensions, for all pairs !x1,!x2,

(1− ε)‖!x1 −!x2‖22 ≤ ‖x̃1 − x̃2‖22 ≤ (1+ ε)‖!x1 −!x2‖22

=⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

‖x1̃ − x̃2‖22

(1− ε)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ε)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cε times the true optimal. Good
exercise to prove this.

12

=

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

If we randomly project to m = O
(

log n
ε2

)
dimensions, for all pairs !x1,!x2,

(1− ε)‖!x1 −!x2‖22 ≤ ‖x̃1 − x̃2‖22 ≤ (1+ ε)‖!x1 −!x2‖22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

‖x1̃ − x̃2‖22

(1− ε)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ε)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cε times the true optimal. Good
exercise to prove this.

12

I I I

Example Application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

#x1,#x2∈Ck

‖!x1 −!x2‖22

If we randomly project to m = O
(

log n
ε2

)
dimensions, for all pairs !x1,!x2,

(1− ε)‖!x1 −!x2‖22 ≤ ‖x̃1 − x̃2‖22 ≤ (1+ ε)‖!x1 −!x2‖22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑

j=1

∑

x1̃,x̃2∈Ck

‖x1̃ − x̃2‖22

(1− ε)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ε)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cε times the true optimal. Good
exercise to prove this.

12

¢ I

l i e

a

