COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 11



- Problem Set 2 is due on Monday at 11:59pm.

- Midterm is in class Tuesday, 10/24. Thursday 10/19 will be
devoted to midterm review.

- The grading on this week’s quiz regarding the extra credit
question had a bug. We will fix manually in the next few days.
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Last Class: X j
<

- Locality sensitive hashing to solve the similarity search problem
efficiently. S- OuNL

- MinHash as a locality sensitive hash function for Jaccard
similarity.

- Brief look at SimHash as a locality sensitive hash function for
cosine (dot product) similarity.

o Toraliby suihe by LA
This Class: . J’“m\% A Xsfmhjf /
- Introduce the frequent elements problem and its applications.

- Solution via the Count-Min sketch random|zed data structure.




The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least  times. k=0
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The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least  times. K210
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The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item

at appears at least § times.
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« What is the maximum number of items that can be

returned?a) N &) n/k d) logn

- Trivial with O(n) space - store the count for each item and

return the one that appears > n/k times.
- Can we do it with less space? l.e,, without storing all n

—_—

items?




The Frequent Items Problem

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

‘[ ‘lceberg queries’ for all items in a database with frequency

ve some threshold. -~ %

Generally want very fast detection, without having to scan
through database/logs. l.e., want to maintain a running list of
frequent items that appear in a stream.



Frequent Itemset Mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3

- Identified via frequent itemset counting. Find all sets of t items
that appear many times in the same basket.
- Frequency of an itemset is known as its support.

- Asingle basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g.,, baskets
are Twitter users and itemsets are subsets of who they follow.
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Approximate Frequent Elements

Issue: No algorithm using o(n) space can output just the items with
frequency > n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k — 1 (should not be output).

X1 Xz X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27 ] 4 |100] 7 3 B

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at

least # times and only items that appear at least (1 —¢) -  times.
S
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Approximate Frequent Elements

Issue: No algorithm using o(n) space can output just the items with
frequency > n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k — 1 (should not be output).

X1 Xz X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27 ] 4 |100] 7 3 B

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at
least # times and only items that appear at least (1 —¢) -  times.

- An example of relaxing to a ‘promise problem’: for items with
frequencies in [(1—€) - §, #] no output guarantee.



Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.



Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

X; Xp X3 X4 N &

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0




Frequent Elements with Count-Min Sketch

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X Xy Xz Xg N &

random hash function h \

m length array A| 0 1 0 0 0 0 0 0 0 0




Frequent Elements with Count-Min Sketch

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X Xy Xz Xg N &

random hash functio%/

m length array A| 1 1 0 0 0 0 0 0 0 0




Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

X; Xp X3 X4 N &

random hash functioy \

m length array A| 1 1 0 0 0 1 0 0 0 0




Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom ﬁlters
s e O
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random hash functioM

m length array A| 1 2 0 0 0 1 0 0 0 0




Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

m length array A




Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

random hash function h

2
Will use Alh(x)] to estimate f(x), the frequency of x in the

stream. l.e, [{xj : x; = x}|.




Count-Min Sketch Accuracy

o) - 220X

m [_:L&/\r{.a ,\— random hash function h

mIengtharrayAl 4 (2 )1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] > f(x). Why?

—_— ~

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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m =SSN

random hash function h
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Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] > f(x). Why?
\ﬁ/

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

X;  Xp Xz X4 e Xn

random hash function h

mIengtharrayAl 4 ‘ 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] > f(x). Why?

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

error in frequency estimate

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h(x)) - f(y)
y#x:h(y)=h(x)
1 1 n
=2 JW) = (n—fx) =
What is a bound on probability that the error is > %?

Lﬁ Mecsy

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10
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Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency esti’mate
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E { > f(y)] = > Pr(h(y) = h(x)) - f(y)
y#x:h(y)=h(x) Y#X
1 1
= — . — — .(nh—
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y#X
What is a bound on probability that the error is > %7?

n
m

Markov's inequality: Pr [Zy#h(y)zh(x) fly) > %”} <1
What property of h is requirgd4a show this bound? a) fully random
b) pairwise independent (@ d) locality sensitive

N

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10




Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash function h

m length arrayAl 4 2 1 E. 1

Claim: For any x, with probability at least 1/2,

) < AT < 706) + 0.

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash function h

N
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f(x) < Alh()] < f(x) +

m
To solve the (e, R)-Frequent elements problem, se

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash function h

m length arrayAl 4 2 1 E. 1

Claim: For any x, with probability at least 1/2,

) < AT < 7(6) + 20
—

To solve the (e, R)-Frequent elements problem, set q\: 2{? How

can we improve the success probability? /uzﬁﬂq}\\qy\ .

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash functioW

mIengtharrayAl 4 ‘ 2 1 E. 1 3]

Claim: For any x, with probability at least 1/2,

%
00 < AL <00 + 71

To solve the (e, R)-Frequent elements problem, set m = 2. How
can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

1



Count-Min Sketch Repetition

t random hash functions
hy, hy,.., by

A, 0 0 0 0 0 0 0 0 0 0

tlength m arrays Az | 0

Aclo o o o|o0o 0|0 0|0 O
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Count-Min Sketch Repetition

X;  Xp X3 X4 I

. t}aﬁdom hash functions
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Count-Min Sketch Repetition
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Count-Min Sketch Repetition

X;  Xp X3 X4

\random hash functions
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A 2

tlength marrays A, | 1 | 6
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Estimate f(x) with f(x) = minicgg Ai[hi(x)]. (count-min sketch)
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Count-Min Sketch Repetition

A

tlength m arrays A \1 6 | 1 10- 4 11| 3 | 5

Estimate f(x) with f(x) = minjegq Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median?
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Count-Min Sketch Repetition

A

tlength m arrays A \1 6 | 1 10- 4 11| 3 | 5
6 3 12 | 33 . 3 2

Estimate f(x) with f(x) = minjegq Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate is
always the most accurate since they are all overestimates of the true

frequency!
12



Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X
t random hash functions

\ by
~FEIS<R

tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]

13



Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X

t random hash functions
\ by
'Q/)‘kz 5‘1\%6 12 1 3‘4'

tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]
- For every x and i € [t], we know that for m = %, with probability

>1/2
I(/)<A[h( )]<f()

13



Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X
t random hash functions

\ by
-~ A1k2 5‘1\%6 12

-
tlength m arrays Az

7 A,

Estimate f(x) by f(x) = minjegg Ai[hi(x)]

- For every x and i e [t], we know that for m = 2k with probability

>1/2 en 6
fO0) < Ailhi()] < O + -

- What is Prf(x) < f(x) < f(x) + <]?
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t random hash functions

\ by
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tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]
- For every x and i € [t], we know that for m = % with probability

>1/2 en
— fx) < Ailhi()] < f(x) + —
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Count-Min Sketch Analysis
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f,L tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]

- For every x and i e [t], we know that for m = 2k with probability

> 1/2 en 6
fO0) < Ailhi()] < O + -

> L e
« What is Prf(x) < f(x) < f(x) + €] 1 -1/2

- To get a good estimate with probability > 1— 4, sett = Iogp/(S). -



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
< nevery itemin a stream up to error ¢ with probability > 1—4din
0 (log(1/6) - I?/ej Mace
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Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4din
O (log(1/0) - R/€) space. ¢

- T
- Accurate enough to solve the (¢, R)-Frequent elements
problem - distinquish between items with frequency 2
and those with frequency (1—¢€)%. S

_—
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Count-Min Sketch
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Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ' with probability > 1 —Jd in

— i
O (log(1/0) - R/€) space.

- Accurate enough to solve the (¢, R)-Frequent elements
problem - distinquish between items with frequency 2
and those with frequency (1 — €)¢.

- How should we set ¢ if we want a good estimate for alg )
. . . z O
items at once, with 99% probability? |0\5(|{5) wle -

o~ ol C- -0
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Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

15



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency

for all elements in the stream? é \lr \,_\,W_, PN e

One approach: wo Y ke %
\L - When a new item comes in at step I, check if its estimated
r/\/ frequency is > i/k and store it if so. 3 >5\ 5

(l’QL <"L)Q A% P < d
3 [

- At step i remove any stored items whose est|mated

frequency drops bel ov_v_l_/fe.

- Store at most O(R) items at once and have all items with

frequency > n/k stored at the end of the stream.
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