COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 11

- Problem Set 2 is due on Monday at 11:59pm.

- Midterm is in class Tuesday, 10/24. Thursday 10/19 will be
devoted to midterm review.

- The grading on this week’s quiz regarding the extra credit
question had a bug. We will fix manually in the next few days.

—

Last Class: X j
<

- Locality sensitive hashing to solve the similarity search problem
efficiently. S- OuNL

- MinHash as a locality sensitive hash function for Jaccard
similarity.

- Brief look at SimHash as a locality sensitive hash function for
cosine (dot product) similarity.

o Toraliby suihe by LA
This Class: . J’“m\% A Xsfmhjf /
- Introduce the frequent elements problem and its applications.

- Solution via the Count-Min sketch random|zed data structure.

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least times. k=0

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least times.

X1 X; X5 Xe Xz Xg Xg

OIERIDIOIRRIOINCARERIE

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least times. & g

pIN X, X3 X4 X5 Xg Xy Xg Xq

(/] 12 [G)] 3 4 5 s | 10 | 3
\ _q
A bes b gl 02 Do

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least times. K210

X, X, X3 X4 Xs Xg X; Xg Xq
5 12 3 3 4 5 5 10 3
- What is the maximumqumber of items that can be
t d? 4 .
returned: /
a) n @» c) n/k d) logn

> ok oz n

<

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item

at appears at least § times.

X1

X;

X3

X,

X5

Xg

X7

Xg

Xg

5

12

3

3

10

« What is the maximum number of items that can be

returned?a) N &) n/k d) logn

- Trivial with O(n) space - store the count for each item and

return the one that appears > n/k times.
- Can we do it with less space? l.e,, without storing all n

—_—

items?

The Frequent Items Problem

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

‘[‘lceberg queries’ for all items in a database with frequency

ve some threshold. -~ %

Generally want very fast detection, without having to scan
through database/logs. l.e., want to maintain a running list of
frequent items that appear in a stream.

Frequent Itemset Mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Cart 3

- Identified via frequent itemset counting. Find all sets of t items
that appear many times in the same basket.
- Frequency of an itemset is known as its support.

- Asingle basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g.,, baskets
are Twitter users and itemsets are subsets of who they follow.

Frequent Itemset Mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 3

- Identified via frequent itemset counting. Find all sets of t items
that appear many times in the same basket.

- Frequency of an itemset is known as its support.

- Asingle basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g.,, baskets
are Twitter users and itemsets are subsets of who they follow. 6

Approximate Frequent Elements

Issue: No algorithm usi

frequency > n/k. Hard to te

(should be output) and n/k — 1 (should not be output).
T~

S

ng o(n)

pace can output just the items with
etween an item with frequency n/k

——

X2

X3

Xq

X5

Xg

xn-n/k+1 Xn

12

9

27

4

101

3 3

K
o)

~——

n/k-1 occurrences

Approximate Frequent Elements

Issue: No algorithm using o(n) space can output just the items with
frequency > n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k — 1 (should not be output).

X1 Xz X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27] 4 |100] 7 3 B

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at

least # times and only items that appear at least (1 —¢) - times.
S

}Q: /O — f\Q)\.//) A\,\—_FQA -7Lw\,-l- S\ vp aCi- /_Q(A_}\
ol

€] = ol PR oy T i g
— < (l’i)o AT 09 0 oy 7

Approximate Frequent Elements

Issue: No algorithm using o(n) space can output just the items with
frequency > n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k — 1 (should not be output).

X1 Xz X3 Xq X5 Xg Xn-n/k+1 Xn
3 |12 9 |27] 4 |100] 7 3 B

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at
least # times and only items that appear at least (1 —¢) - times.

- An example of relaxing to a ‘promise problem’: for items with
frequencies in [(1—€) - §, #] no output guarantee.

Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

X; Xp X3 X4 N &

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0

Frequent Elements with Count-Min Sketch

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X Xy Xz Xg N &

random hash function h \

m length array A| 0 1 0 0 0 0 0 0 0 0

Frequent Elements with Count-Min Sketch

Today: Count-min sketch — a random hashing based method
closely related to bloom filters.

X Xy Xz Xg N &

random hash functio%/

m length array A| 1 1 0 0 0 0 0 0 0 0

Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

X; Xp X3 X4 N &

random hash functioy \

m length array A| 1 1 0 0 0 1 0 0 0 0

Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom ﬁlters
s e O

=Xy x1 e

random hash functioM

m length array A| 1 2 0 0 0 1 0 0 0 0

Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

m length array A

Frequent Elements with Count-Min Sketch

Today: Count-min sketch - a random hashing based method
closely related to bloom filters.

random hash function h

2
Will use Alh(x)] to estimate f(x), the frequency of x in the

stream. l.e, [{xj : x; = x}|.

Count-Min Sketch Accuracy

o) - 220X

m [_:L&/\r{.a ,\— random hash function h

mIengtharrayAl 4 (2)1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] > f(x). Why?

—_— ~

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

m =SSN

random hash function h

2'\06(«\\

m length array A | 4
—

~—

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] > f(x). Why?
\ﬁ/

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

X; Xp Xz X4 e Xn

random hash function h

mIengtharrayAl 4 ‘ 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] > f(x). Why?

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

= AThG)] = FX) + 2y sen()=heo FV)-
— e

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

error in frequency estimate

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency estimate

El Y fwn|=

y#xN(y)=h(x)

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency estimate

E % fo)| =D _Pr(h(y) =h(x)-f(y) =
#x:h(y)=h(x) Y#X %Ey -
/

—_—

n,

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

%,—/
Expected Error: error in frequency estimate
E { > f()/)] =Y _Pr(h(y) = h(x)) - f(y)
y#x:h(y)=h(x) Y#X —
1
= m v)
V#X
—_

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency estimate
E{ > f(y)] = S Pr(h(y) = h()))
y#x:h(y)=h(x) y;éx
n
=2 =V (—f(x) 9§ —

;)Z ”JJ

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h(x)) - f(y)
y#x:h(y)=h(x)
1 1 n
=2 JW) = (n—fx) =
What is a bound on probability that the error is > %?

Lﬁ Mecsy

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency estimate

E { > f(y)] = > _Pr(h(y) = h(x))-f)
Y

#xh(y)=h(x)

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Alh()] = f(x) + >, v

yAch(y)=h(x)

S —
Expected Error: error in frequency esti’mate

c L

s~ m

E { > f(y)] = > Pr(h(y) = h(x)) - f(y)
y#x:h(y)=h(x) Y#X
1 1
= — . — — .(nh—
S>3 =)= (0= f(x) <
y#X
What is a bound on probability that the error is > %7?

n
m

Markov's inequality: Pr [Zy#h(y)zh(x) fly) > %”} <1
What property of h is requirgd4a show this bound? a) fully random
b) pairwise independent (@ d) locality sensitive

N

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash function h

m length arrayAl 4 2 1 E. 1

Claim: For any x, with probability at least 1/2,

) < AT < 706) + 0.

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

1

Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash function h

N
> =
7 m length array A | 4 2 1 1 3] 2
c | [
¢ (- Oy
Zn _ v 0
Cla|m Foranyx with probability at least 1/2, » —— = X - €
d,i)m&" EF ™M K <
< AN

f(x) < Alh()] < f(x) +

m
To solve the (e, R)-Frequent elements problem, se

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash function h

m length arrayAl 4 2 1 E. 1

Claim: For any x, with probability at least 1/2,

) < AT < 7(6) + 20
—

To solve the (e, R)-Frequent elements problem, set q\: 2{? How

can we improve the success probability? /uzﬁﬂq}\\qy\ .

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

1

Count-Min Sketch Accuracy

Xy Xp X3 X4 X,

random hash functioW

mIengtharrayAl 4 ‘ 2 1 E. 1 3]

Claim: For any x, with probability at least 1/2,

%
00 < AL <00 + 71

To solve the (e, R)-Frequent elements problem, set m = 2. How
can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

1

Count-Min Sketch Repetition

t random hash functions
hy, hy,.., by

A, 0 0 0 0 0 0 0 0 0 0

tlength m arrays Az | 0

Aclo o o o|o0o 0|0 0|0 O

12

Count-Min Sketch Repetition

X; Xp X3 X4 I

Erandom hash functions
hy, hy,... by

A1100000‘0‘000

tlength m arrays Az | 0

Aclo 10 o|0 0|0 0|0 O

12

Count-Min Sketch Repetition

X; Xp X3 X4 I

. t}aﬁdom hash functions
hy, hy,... by

Al2 0o/ d o % o|o0olo 0o o

tlength marrays A, | 0 | ©

Aclo 10 o]0 0|1 0|0 O

12

Count-Min Sketch Repetition

A,

tlength merrayst A, | 1 s\ 1 |10 78!4 1|3 |5

\J'
ﬁ-—At.l 52 6 | 3 |12 33.3 2

12

Count-Min Sketch Repetition

X; Xp X3 X4

\random hash functions

5

A 2

tlength marrays A, | 1 | 6

o
A

At.l 52)6 | 3 | 12 33.3 2

g

Estimate f(x) with f(x) = minicgg Ai[hi(x)]. (count-min sketch)

12

Count-Min Sketch Repetition

A

tlength m arrays A \1 6 | 1 10- 4 11| 3 | 5

Estimate f(x) with f(x) = minjegq Ai[hi(x)]. (count-min sketch)

12

Count-Min Sketch Repetition

A

tlength m arrays A \1 6 | 1 10- 4 11| 3 | 5

Estimate f(x) with f(x) = minjegq Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median?

12

Count-Min Sketch Repetition

A

tlength m arrays A \1 6 | 1 10- 4 11| 3 | 5
6 3 12 | 33 . 3 2

Estimate f(x) with f(x) = minjegq Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate is
always the most accurate since they are all overestimates of the true

frequency!
12

Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X
t random hash functions

\ by
~FEIS<R

tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]

13

Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X

t random hash functions
\ by
'Q/)‘kz 5‘1\%6 12 1 3‘4'

tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]
- For every x and i € [t], we know that for m = %, with probability

>1/2
I(/)<A[h()]<f()

13

Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X
t random hash functions

\ by
-~ A1k2 5‘1\%6 12

-
tlength m arrays Az

7 A,

Estimate f(x) by f(x) = minjegg Ai[hi(x)]

- For every x and i e [t], we know that for m = 2k with probability

>1/2 en 6
fO0) < Ailhi()] < O + -

- What is Prf(x) < f(x) < f(x) + <]?

13

Count-Min Sketch Analysis

Xy Xp X3 X4 e Xn

X
t random hash functions

\ by
~FEIS<R

tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]
- For every x and i € [t], we know that for m = % with probability

>1/2 en
— fx) < Ailhi()] < f(x) + —

- What is Pr[f(x) Qéf() w7 1=1/2 €n For OJ\

eI 2+ 2 Taly F byt NSl

Count-Min Sketch Analysis

\/\\(,\ ”\W\LOV>
£ o d 2

e ye
\ee ot

———

"
f,L tlength m arrays Az

Estimate f(x) by f(x) = minjegg Ai[hi(x)]

- For every x and i e [t], we know that for m = 2k with probability

> 1/2 en 6
fO0) < Ailhi()] < O + -

> L e
« What is Prf(x) < f(x) < f(x) + €] 1 -1/2

- To get a good estimate with probability > 1— 4, sett = Iogp/(S). -

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
< nevery itemin a stream up to error ¢ with probability > 1—4din
0 (log(1/6) - I?/ej Mace

m z [.zpd%— of" Q&x.(,lﬂ AV,

14

e
HFW/‘LU (ﬂ

14

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4din
O (log(1/0) - R/€) space. ¢

- T
- Accurate enough to solve the (¢, R)-Frequent elements
problem - distinquish between items with frequency 2
and those with frequency (1—¢€)%. S

_—

14

Count-Min Sketch

F\ w 4\,\(,%(z,’;ll\\nc\v 1%;— l_\m / ll UOL\,Q,

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ' with probability > 1 —Jd in

— i
O (log(1/0) - R/€) space.

- Accurate enough to solve the (¢, R)-Frequent elements
problem - distinquish between items with frequency 2
and those with frequency (1 — €)¢.

- How should we set ¢ if we want a good estimate for alg)
. . . z O
items at once, with 99% probability? |0\5(|{5) wle -

o~ ol C- -0

= N

ave RETE)

Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

15

Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency

for all elements in the stream? é \lr \,_\,W_, PN e

One approach: wo Y ke %
\L - When a new item comes in at step I, check if its estimated
r/\/ frequency is > i/k and store it if so. 3 >5\ 5

(l’QL <"L)Q A% P < d
3 [

- At step i remove any stored items whose est|mated

frequency drops bel ov_v_l_/fe.

- Store at most O(R) items at once and have all items with

frequency > n/k stored at the end of the stream.

15

