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Logistics

• Problem Set 2 is due Monday 10/16 at 11:59pm.
• The midterm is in class on Tuesday 10/24. Midterm study
material will be posted shortly.

• We have a quiz this week, but not the next two weeks (due
to the problem set and midterm).
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Summary

Last Class:

• Discussion of practical algorithms for distinct items estimation
(LogLog/HyperLogLog).

• Introduction of Jaccard similarity and the similarity research
problem.

This Class:

• Locality sensitive hashing for fast similarity search.

• MinHash as a locality sensitive hash function for Jaccard
similarity

• Balancing false positives and negatives with LSH signatures and
repeated hash tables.
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Search with Jaccard Similarity

J(A,B) = |A ∩ B|
|A ∪ B| =

# shared elements
# total elements

.

Want Fast Implementations For:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high Jaccard similarity to
anything in the database. Ω(n) time with a linear scan.

• All-pairs Similarity Search: Have n different sets/bit strings and
want to find all pairs with high Jaccard similarity. Ω(n2) time if
we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.
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Locality Sensitive Hashing

Goal: Speed up Jaccard similarity search (near neighbor and all-pairs
similarity search).

Strategy: Locality sensitive hashing (LSH).

• Design a hash function where the collision probability is higher
when two inputs are more similar (can design different
functions for different similarity metrics.)
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LSH For Similarity Search

How does locality sensitive hashing (LSH) help with similarity search?

• Near Neighbor Search: Given item x, compute h(x). Only search
for similar items in the h(x) bucket of the hash table.

• All-pairs Similarity Search: Scan through all buckets of the hash
table and look for similar pairs within each bucket.

• We will use h(x) = g(MinHash(x)) where g : [0, 1] → [n] is a
random hash function. Why?
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MinHashing

An Example: Locality sensitive hashing for Jaccard similarity.

Strategy: Use random hashing to map each set to a single hash
value. The probably that two sets have colliding hash values will be
proportional to their Jaccard similarity.

MinHash(A): [Andrei Broder, 1997 at Altavista]

• Let h : U → [0, 1] be a random
hash function

• s := 1

• For x1, . . . , x|A| ∈ A

• s := min(s,h(xk))

• Return s
Identical to our distinct elements sketch!
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MinHash Analysis

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Pr

(
min
x∈A

h(x) = min
y∈B

h(y)
)

=?

• Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x %= y (i.e., no spurious collisions)

• MinHash(A) = MinHash(B) only if an item in A ∩ B has the
minimum hash value in both sets.
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MinHash Analysis

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Claim: MinHash(A) = MinHash(B) only if an item in A ∩ B has the
minimum hash value in both sets.

Pr(MinHash(A) = MinHash(B)) =?

|A ∩ B|
total # items hashed

=
|A ∩ B|
|A ∪ B| = J(A,B).

Locality sensitive: the higher J(A,B) is, the more likely
MinHash(A),MinHash(B) are to collide.
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Similarity Search with MinHash

Goal: Given a document y, identify all documents x in a database
with Jaccard similarity (of their shingle sets) J(x, y) ≥ 1/2.

Our Approach:

• Create a hash table of size m, choose a random hash function
g : [0, 1] → [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).

• What is Pr [g(MinHash(x)) = g(MinHash(y))] assuming
J(x, y) = 1/2 and g is collision free?

• For every document x in your database with J(x, y) ≥ 1/2 what is
the probability you will find x in bucket g(MinHash(y))?
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Reducing False Negatives

With a simple use of MinHash, we miss a match x with J(x, y) = 1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MH1(x), . . . ,MHt(x). Apply random hash function g to map all
these values to locations in t hash tables.

• To search for items similar to y, look at all items in bucket
g(MH1(y)) of the 1st table, bucket g(MH2(y)) of the 2nd table, etc.

• What is the probability that x with J(x, y) = 1/2 is in at least one
of these buckets, assuming for simplicity g has no collisions?

1− (probability in no buckets) = 1−
( 1
2
)t

≈ .99 for t = 7.

• What is the probability that x with J(x, y) = 1/4 is in at least one
of these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

( 3
4
)t ≈ .87 for t = 7.

Potential for a lot of false positives! Slows down search time.
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Balancing Hit Rate and Query Time

We want to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature.

12
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Balancing Hit Rate and Query Time

Consider searching for matches in t hash tables, using MinHash
signatures of length r. For x and y with Jaccard similarity J(x, y) = s:

• Probability that a single hash matches.
Pr

[
MHi,j(x) = MHi,j(y)

]
= J(x, y) = s.

• Probability that x and y having matching signatures in repetition
i. Pr

[
MHi,1(x), . . . ,MHi,r(x) = MHi,1(y), . . . ,MHi,r(y)

]

= sr

.

• Probability that x and y don’t match in repetition i:

1− sr.

• Probability that x and y don’t match in all repetitions: (1− sr)t.

• Probability that x and y match in at least one repetition:

Hit Probability: 1− (1− sr)t.
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The s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.
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s-curve Example

For example: Consider a database with 10, 000, 000 audio clips. You
are given a clip x and want to find any y in the database with
J(x, y) ≥ .9.

• There are 10 true matches in the database with J(x, y) ≥ .9.

• There are 10, 000 near matches with J(x, y) ∈ [.7, .9].

With signature length r = 25 and repetitions t = 50, hit probability
for J(x, y) = s is 1− (1− s25)50.

• Hit probability for J(x, y) ≥ .9 is ≥ 1− (1− .925)50 ≈ .98

• Hit probability for J(x, y) ∈ [.7, .9] is ≤ 1− (1− .925)50 ≈ .98

• Hit probability for J(x, y) ≤ .7 is ≤ 1− (1− .725)50 ≈ .007

Expected Number of Items Scanned: (proportional to query time)

≤ 10+ .98 ∗ 10, 000+ .007 ∗ 9, 989, 990 ≈ 80, 000

+ 10, 000, 000.
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Hashing for Duplicate Detection

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!
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Generalizing Locality Sensitive Hashing

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.

• LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(θ(x, y))

= 〈x,y〉
‖x‖2·‖y‖2

.

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦
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SimHash for Cosine Similarity

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = sign(〈x, t〉) for a random vector t.
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SimHash for Cosine Similarity

What is Pr [SimHash(x) = SimHash(y)]?

SimHash(x) %= SimHash(y) when the plane separates x from y.

• Pr [SimHash(x) %= SimHash(y)] = θ(x,y)
π

• Pr [SimHash(x) = SimHash(y)] = 1− θ(x,y)
π ≈ cos(θ(x,y))+1

2
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Questions on MinHash and Locality Sensitive Hashing?
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