
This article is not an exact copy of the original published article in Methods of Information in Medicine.
The definitive publisher-authenticated version of Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Oster-
weil, L.J., Brown, D., Cassells, L. and Mertens, W. 2008. Formally Defining Medical Processes. Methods
of Information in Medicine. Special Topic on Model-Based Design of Trustworthy Health Information
Systems, 47 (5). 392-398 is available online at:
http://www.schattauer.de/index.php?id=1948&L=1&artikel=23710&cHash=6a4f3ba1ef

Formally Defining Medical Processes

Stefan Christov, Bin Chen, George S. Avrunin, Lori A. Clarke, Leon J. Osterweil

Department of Computer Science
University of Massachusetts at Amherst, Amherst, MA 01003

{christov, chenbin, avrunin, clarke, ljo} @ cs.umass.edu

David Brown, Lucinda Cassells, Wilson Mertens

D’Amour Center for Cancer Care, Springfield, MA 01199
{david.brown, lucy.cassells, wilson.mertens} @ bhs.org

Abstract. Objectives: To demonstrate a technology-based approach to continu-
ously improving the safety of medical processes.

Methods: The paper describes the Little-JIL process definition language, origi-
nally developed to support software engineering, and shows how it can be used
to model medical processes. A Little-JIL model of a chemotherapy process dem-
onstrates how this model, and some process analysis technologies that are also
briefly described, can identify process defects that pose safety risks.

Results: Rigorously modeling medical processes with Little-JIL and applying
automated analysis techniques to those models helped identify process defects
and vulnerabilities and led to improved processes that were reanalyzed to show
that the original defects were no longer present.

Conclusions: Creating detailed and precisely defined models of medical proc-
esses that are then used as the basis for rigorous analyses can lead to improve-
ments in the safety of these processes.

Keywords: medical safety, continuous process improvement, process modeling

1 Introduction: Technologies for Medical Process Improvement

Continuous process improvement has been employed to improve quality in such di-
verse areas as manufacturing, software development, and business administration.
The work described in this paper outlines how this approach might be applied to ad-
dress quality improvement in the medical domain. The need for quality improvement
in medical care has become increasingly clear in recent years. Much of the attention
to this problem was catalyzed by the IOM report, “To Err Is Human” (1), which esti-
mated that in the United States approximately 98,000 deaths per year were attribut-
able to avoidable errors. That report and a subsequent related IOM report (2) suggest
that computer technologies should be employed to address the underlying problems
and reduce the incidence of errors that cause needless cost and suffering. There are

2

many candidate technologies for doing this. We suggest that technologies originally
developed to support continuous process improvement for software systems seem to
be particularly applicable.

Continuous process improvement was espoused by W. Edwards Deming (3),
whose work was applied successfully by the Japanese auto manufacturing industry.
That early success led to the adoption of the principles of continuous process im-
provement in wider domains and more countries. The core of the idea is the so-called
PDCA (Plan-Do-Check-Act) paradigm, often referred to as the “Deming Cycle” (al-
though Deming himself refers to it as the “Shewhart Cycle”, in honor of Walter She-
whart, who had articulated the ideas previously (4)). Fundamentally, this cycle posits
that there is a process that is the central focus of improvement. In the Plan phase of
the PDCA cycle, improvements to the process are formulated and considered. In the
Do phase, the improvements are installed. In the Check Phase, the proposed im-
provements are analyzed and evaluated to see that they are indeed likely to effect im-
provements. In the Act phase, the modified process is actually deployed. The net ef-
fect of this full cycle should be demonstrable improvement. The resulting outcome of
the cycle is then the subject of the Plan phase of the next cycle.

Our efforts to apply the PDCA cycle to improving quality of medical care have fo-
cused on defining medical processes and then applying analyses to them. In particu-
lar, we used a process definition language, Little-JIL, to define medical processes
clearly, precisely, and in detail. In this paper, we concentrate mainly on this aspect of
our approach – the creation of a precise process definition. We have also used a prop-
erty specification system, PROPEL (5), to define event sequence properties and then
have demonstrated that analyzers, such as FLAVERS (6) and SPIN (7), can be used to
determine whether the Little-JIL-defined processes conform to the PROPEL-specified
properties. We have undertaken several case studies to evaluate this approach and
have found that the technologies mentioned above are indeed useful in supporting
medical process improvement of the sort advocated by Shewhart and Deming.

In the next section, we present the Little-JIL process definition language and pro-
vide examples of how it is used to define a chemotherapy process. Section 3 de-
scribes our experiences, and Section 4 overviews related work. Section 5 suggests
some future research directions.

2 An Example: Chemotherapy Preparation and Administration

Chemotherapy medications are typically highly toxic, and thus it is of overriding im-
portance that the right patient receives the right medications in the right dosages at the
right times. To assure this, elaborate processes are carried out that integrate the efforts
of such diverse medical personnel as doctors, nurses, pharmacists, and clerical work-
ers. Chemotherapy processes aim to speed the flow of treatment, while assuring that
errors do not occur. Preliminary examination of these processes suggested that they
are large and complex, and their growing complexity makes it increasingly difficult to
be sure they provide sufficient protection against the commission of errors.

We began by defining some example chemotherapy processes. Earlier work in de-
fining processes in such other domains as software development, scientific data proc-

3

essing (8), and e-government (9) suggested that a powerful process definition lan-
guage would be needed. We chose to use the Little-JIL process definition language
because our previous experience suggested that semantic features of this language
were likely to be effective in defining processes in the chemotherapy domain.

2.1 Principal Features of Little-JIL

Little-JIL (10, 11) was originally developed to define software development proc-
esses. A Little-JIL process definition has three components, an artifact collection, a
resource repository, and a coordination specification. The artifact collection contains
the items that are the products of the process. The resource repository specifies the
agents and capabilities that support performing the activities. The coordination speci-
fication ties these together, specifying which agents and supplementary capabilities
perform which activities on which artifacts at which time(s).

A Little-JIL coordination specification has a visual representation, but is precisely
defined (using finite-state automata), which makes it amenable to definitive analyses.
Among the features of Little-JIL that distinguish it from most process languages are
its 1) use of abstraction to support scalability and clarity, 2) use of scoping to restrict
data and control flow, 3) facilities for specifying concurrency, 4) capabilities for deal-
ing with exceptional conditions, 5) capabilities for specifying the utilization of re-
sources, and 6) clarity in specifying iteration.

A Little-JIL coordination specification consists of hierarchically decomposed
steps, where a step represents a task to be done by an assigned agent. Each black bar
in Figure 1 is an iconic representation of a step with some of its features. Each step
has a name and a set of badges to represent control flow among its substeps, its inter-
face (specifying its input/output artifacts and the resources it requires), the exceptions
it handles, etc. A step with no substeps is a leaf step. It represents an activity per-
formed by an agent, without any process guidance. Below we present some Little-JIL
features.

Resources and Agents—A Little-JIL step interface (represented by a filled circle
above the step name) specifies the types of resources required to support execution of
the step. Some examples of resources are infusion suites and medical records. Each
step has one special resource, called its agent, which has responsibility for performing
the step. Little-JIL agents may be humans, groups of humans, or automated devices.

Substep Decomposition—Little-JIL steps may be decomposed into two kinds of
substeps, ordinary substeps and exception handlers. Ordinary substeps define how
each step is executed and are connected to their parent by edges annotated by specifi-
cations of the artifacts that flow between parent and substep. Exception handlers de-
fine how exceptions thrown by the step’s descendants are handled.

Step Sequencing—A non-leaf step has a sequencing badge (an icon on the left in
the step bar; e.g., the equal sign on the step chemotherapy process in Figure 1) that
defines the order of substep execution. Little-JIL has four step kinds. The example
depicted in Figure 1 uses two, the sequential step (right arrow), indicating that sub-
steps execute from left to right and the parallel step (equal sign), indicating that sub-
steps execute in any (possibly interleaved) order, although the order may be con-
strained by such factors as the lack of needed resources.

4

Channels—Channels are named entities that act like buffers, directly connecting
specifically identified source step(s) with specifically identified destination step(s).
This construct supports non-parameterized data flow and helps synchronize concur-
rently executing steps.

Exception Handling—A Little-JIL step can throw an exception when some aspect
of its execution fails. This triggers execution of a matching exception handler defined
at an ancestor step of the step throwing the exception. Figure 1 shows an exception
handler consider alternative treatment (connected to the X in the root step bar), which
is triggered when one of the children of the root step throws a matching exception.

2.2 An Example Using Little-JIL to Define a Chemotherapy Process

Figures 1, 2, and 3 depict part of a Little-JIL definition of a chemotherapy process.
Figure 1 is the top-level diagram of the process and thus represents it at a high level
of abstraction. The entire Little-JIL process definition has more than 250 steps. The
part of the process definition that is depicted here is concise but representative of
many interesting issues that arise in defining the full process.

A diagram is created using the Little-JIL visual editor, which allows the developer
to suppress visualization of process details for the sake of clarity. Thus, Figures 1, 2
and 3 do not display full details of the resources and artifacts declarations in each step
but represent them iconically by the step’s interface circle.

Figure 1 indicates that the process definition is decomposed into two substeps that
can be executed in parallel (note the equal sign in the step bar). In the full process
definition, each substep is further decomposed down to the level of leaf steps for
which the process definer is unable to provide, or uninterested in providing, process
detail. As noted above, Figure 1 also shows that the root step chemotherapy process
has a substep consider alternative treatment that is as an exception handler (note the

Figure 1: A coordination diagram of Little-JIL chemotherapy process

5

“X” sign on the chemotherapy process step bar to which the step consider alternative
treatment is connected).
The first substep, prepare for and administer first cycle of chemotherapy, of the root
step chemotherapy process is decomposed into six substeps to be executed in se-
quence (note the right arrow in the step bar). The six substeps of prepare for and ad-
minister first cycle of chemotherapy are the major stages of the chemotherapy process.
Although the agent assignments are not shown in this diagram, perform consultation
and assessment is done by a Medical Doctor (MD); perform initial review of patient
records by a Practice Registered Nurse (RN) and a Triage Medical Assistant; perform
pharmacy task by a Pharmacist; perform patient teaching by a Nurse Practitioner;
perform final tasks (day before chemo) by a Pharmacist and a Clinic RN; and the first
day of chemo is done again by a Pharmacist and a Clinic RN.

In this example, a channel is used to specify that an MD cannot dictate the consult
note before evaluating the patient’s condition. But, since the consult note is primarily
used for billing and does not directly affect the patient’s treatment, the doctor may
choose to dictate the consult note right after evaluating the patient or later, while the
tasks in prepare for and administer first cycle of chemotherapy are underway. This
step sequencing flexibility is captured by the diagram in Figure 1, which shows that
the dictate consult note step can potentially execute in parallel with the step prepare
for and administer first cycle of chemotherapy. At the same time, the “consultation
channel” imposes the additional restriction that the MD cannot dictate the consult
note before evaluating the patient’s condition – the step dictate consult note takes a
parameter from the “consultation channel” (declared at the root step so that it is visi-
ble, hence usable, by all of its descendants) and thus cannot start until perform patient
consultation (shown in Figure 2), which is a substep of perform consultation and as-
sessment, completes and writes a parameter to the “consultation channel.

Figure 2 shows the decomposition of the step perform consultation and assessment
from Figure 1. Since perform consultation and assessment is a sequential step (right
arrow in the step bar), its substeps need to execute in the order specified in the dia-
gram. Thus, first the patient has to fill out medical history forms, then a medical assis-
tant (MA) has to measure height and weight, record them, and check the vital signs of
the patient. After that, the medical doctor (MD) has to examine the patient, perform

Figure 2: The task decomposition of perform consultation and assessment

6

reviews, consult the patient, create a treatment plan, and enter orders in the system.
Figure 2 illustrates the ability of Little-JIL to capture information about the agents
(represented as annotations in this figure) who execute the tasks in a process. Figure 2
also demonstrates the use of exceptions to model non-standard scenarios in a medical
processes – if the MD discovers that the pathology report does not indicate cancer, the
step review pathology report, scans and results throws an exception and control is
transferred to the matching exception handler consider alternative treatment, which
was discussed in the context of Figure 1. Finally, Figure 2 shows the use of channels
to provide synchronization among steps in a Little-JIL process definition. The step
perform patient consultation writes a parameter to the “consultation channel” and thus
it needs to execute before the step dictate consult note (in Figure 1), which reads from
the “consultation channel”, can start execution.

Figure 3 decomposes the substep transcribe and place consult note in patient’s
record of the root step chemo process. Note that the process shown in this diagram
provides further details of the handling of the consult note. Figure 1 specifies that
transcribe and place consult note in patient’s record is the second substep of the se-
quential step create and process consult note. This, means that transcribe and place
consult note in patient’s record cannot start until the step dictate consult note has
completed. This sequencing mechanism is a faithful representation of the real world
situation. In this process, the doctor dictates the consult note on the phone. The doc-
tor’s message is recorded and triggers the tasks of the transcriber, who is external to
the clinic. The transcriber listens to the message, transcribes the consult note, emails it
to the doctor’s secretary, and so on. Except for needing to wait for the availability of
the consult note, this can happen in parallel with the tasks in prepare for and adminis-
ter first cycle of chemotherapy.

Figure 3: The task decomposition of transcribe and place consult note in patient’s record

7

3. Experience

The very task of eliciting details from the medical professionals about the chemother-
apy process and capturing those details formally in Little-JIL led to the discovery of
several defects in the process. Applying analysis techniques also helped us detect de-
fects. Finite-state verification, for example, was used to determine if specified goals,
or properties, are always satisfied on all possible execution paths through the process
definition. One of the properties required to hold in the chemotherapy process stated
“Before Chemotherapy Can Be Administered to a Patient, that Patient's Consult Note
Needs to Be Put in that Patient's Record.” This means that the step administer chemo
drug (which is part of the step first day of chemo in Figure 1) cannot be performed
until the step file consult note in patient’s record (shown in Figure 3) has been com-
pleted. We modeled this property as a finite-state automaton using the PROPEL sys-
tem (5) and then used the FLAVERS finite-state verifier (6) to check whether the
process satisfies this property. Although a channel imposes some synchronization
between the parallel activities in the chemotherapy process, FLAVERS detected that
concurrent execution can allow at least one execution sequence that leads to a prop-
erty violation, i.e. administer chemo drug occurs before file consult note in patient's
record completes. Detailed discussion about analyzing Little-JIL definitions of medi-
cal processes is beyond the scope of this paper, but a more comprehensive treatment
of the subject is presented in (12).

The discovery of defects led to changes in the chemotherapy process definition to
eliminate those defects. For example, we found that some traces through the process
definition could bypass a check to see if the patient's height or weight, on which the
chemotherapy dose is based, are sufficiently up-to-date. After careful scrutiny it was
determined that this defect was not merely a process definition error, but an actual
error in the process. The medical professionals then proposed changes in the process
definition. The modified process definition was then reanalyzed with respect to all the
properties, not just the one that caused this defect. The process and its process defini-
tion were subsequently improved so this check always occurred on all possible traces
before chemotherapy could be administered. The medical professionals involved in
the project found benefit in this process improvement cycle.

One of the observations that became apparent during the early interviews with the
medical professionals was that the terminology used to describe the chemotherapy
process was sometimes inconsistent. For example, words like “verify”, “confirm”,
and “check” were used loosely. The same word used at different times or in different
contexts often had different meanings, even when used by the same individual. Since
many of the critical errors that may occur in a medical process may arise from ne-
glecting small details, we developed a glossary that disambiguated the use of different
terms. Thus, our experience suggests that the effort of defining and analyzing com-
plex medical processes can benefit if such a glossary is employed.

We also found that process guidelines usually contain adequate details when de-
scribing common, standard scenarios, but do not provide enough details, or often any
details, for handling many exceptional cases. For example, there were places in the
guidelines where an agent is to confirm the correctness of some information and, if
the confirmation succeeds, the agent is to continue with the rest of the defined tasks.

8

If the confirmation fails, then the guidelines often lack specific instructions detailing
how the agent should proceed. In some cases, we observed that different agents were
handling the exceptional cases differently. While modeling the process with Little-
JIL, the rich exception handling semantics of the language encouraged us to think
about exceptional scenarios and to ask specific questions about the process to be exe-
cuted following the occurrence of an exception, the agents involved in resolving that
exception, and the place in the process where control is transferred once the exception
has been handled. Questions like “What do you do when the check fails?” and
“Which task do you proceed with and which tasks do you need to redo when you have
resolved the problem?” typically triggered discussions among the medical profession-
als that resulted in more complete and rigorous specification of how to deal with these
exceptional cases, thus improving the process.

The resource and artifact modeling capabilities of Little-JIL also led to interesting
questions during the interviewing stage that exposed some deficiencies in the process.
For example, the chemotherapy process relies heavily on a paper copy of a treatment
plan, which is an artifact created at the earlier stages of the process and then verified
independently and signed by medical professionals. Doctors, however, enter changes
to a treatment plan electronically, which sometimes leads to inconsistencies between
the current electronic version and the paper copy that circulates among the medical
professionals. The artifact model of Little-JIL and the need to precisely distinguish
between paper and electronic records led to the discovery of such issues.

Overall, we found that the rich semantics of Little-JIL proved useful for defining
the chemotherapy process. The exception handling mechanisms enabled the process
definition to reflect the real world process more accurately. Modeling resources (both
agent and non-agent) and artifacts were an important part of the specification of the
process. The channel synchronization mechanism for specifying direct communica-
tion and synchronization among steps was also useful. Hierarchy and abstraction were
beneficial in helping to reduce the size of the process definition and in allowing the
process to be defined at different levels of abstraction.

Elicitation of the process required almost two semesters of weekly meetings be-
tween process developers and medical professionals. In these meetings usually there
were two graduate students and at least one faculty member along with two or three
medical professionals. The medical professionals comprised different combinations of
physicians, pharmacists, nurses, and medical assistants. The graphical notations, as
well as the language’s constructs supporting abstraction and exception handling, fa-
cilitated the communication of computer science concepts to the medical profession-
als. We usually presented the process to the medical professionals in textual, natural
language form, but we were often asked to show the Little-JIL diagrams. Although
we believe that it is most likely that the Little-JIL definitions will be written by com-
puter scientists or medical informatics specialists, our experiences suggest that medi-
cal professionals, with a little training, can become comfortable reading Little-JIL
process definitions.

9

4. Related Work

The medical informatics community has developed several languages for specifying
medical processes (e.g. Asbru (13), EON (14), Glare (15), GLIF (16), PROforma
(17)). Similarly to Little-JIL, these languages model medical processes as a collection
of tasks and provide support for hierarchical decomposition, decisions, goals,
concurrency, and exception handling. Some languages, however, support certain fea-
tures better than others. For example, Little-JIL separates normal flow from excep-
tional flow, provides a means to pass information about the exception and its context
to exception handlers, and provides various continuation options after an exception
has been handled. We found that these language features, intended for specific and
articulate support of exception handling, are extremely important when modeling
medical processes, since exceptions frequently arise, and their representation in a
process definition should be made particularly clear and accessible to medical profes-
sionals who are counted upon to validate definitions of their processes. Similarly,
Little-JIL also supports abstraction well by supporting parameterized procedure invo-
cation. This language feature likewise adds to the clarity of Little-JIL process defini-
tions, facilitating their comprehensibility. The other languages mentioned above do
not seem to provide equivalent semantic richness to facilitate process definition com-
prehensibility.

Little-JIL and PROforma are general-purpose process modeling languages,
whereas, EON and GLIF are designed specifically to model processes from the medi-
cal domain. These domain specific languages also provide support for drawing upon
domain ontologies. This would be an interesting feature to consider adding to Little-
JIL to encourage the consistent use of terminology. In addition, Little-JIL’s support
for timing is not as strong as that provided by the above languages.

Some of these languages have also been used as the basis for formal analysis. For
example, as part of the Protocure II project (18), Asbru (19, 20) has been used with
the KIV theorem prover (21) and with the SMV model checker (22) . Glare has been
used with SPIN (7). The rigorous semantics of Little-JIL allow for fully automated
translation of Little-JIL process definitions to input languages of formal verifiers. We
have built tools that automatically translate Little-JIL process definitions to the input
representations of FLAVERS (6) and SPIN. These tools have helped us avoid manual
translation, which is time-consuming and error-prone. There also is automated sup-
port for translating Asbru into the internal representation used by SMV and KIV. We
have also developed and used PROPEL (5), which provides natural language support
for specifying mathematical properties. Using PROPEL, FLAVERS, and SPIN, we
have verified Little-JIL process definitions and discovered errors in real medical
processes (12).

Much of the related work in the medical informatics domain has focused on mod-
eling medical guidelines that describe the treatment of a single patient with a particu-
lar diagnosis. Risks to patient safety, however, arise not only from errors in such
guidelines, but from problems in the processes through which health-care providers
actually deliver these treatments by interacting with each other, the patient, and the
resources required for care (1). Our work has largely been concerned with modeling
and analyzing these organizational, or system, processes, and Little-JIL’s support for

10

abstraction and facilities for specifying agent types, resources, and exceptional behav-
ior have been correspondingly important.

Noumeir has also pursued similar goals using a UML-like notation to define proc-
esses (23). Others (e.g., (24)), have viewed medical processes as workflows and have
used workflow-like languages to define processes and drive their execution. The
models created by these projects seem to be less amenable to formal analysis.

Other approaches to improving medical safety have targeted quality control meas-
ures (25), error reporting systems (26), and process automation in laboratory settings
(27). In other work, Bayesian belief networks have been used as the basis for discrete
event simulations and to guide treatment planning (e.g., (28)).

5. Conclusion

This paper presents some of the benefits that arise from the use of a process definition
language to describe medical processes. The Little-JIL process definition language
provides a rich set of semantic features. We overviewed some of those features and
demonstrated how they could be used in an example chemotherapy administration
process. While developing the process definition, a number of serious potential de-
fects in the actual process were detected. This resulted in the process definition being
modified and, after careful scrutiny, the corresponding process updated to remove
those defects.

Since the process definitions can become quite large and complex, manually re-
viewing these definitions is not sufficient. Instead, we advocate the use of automated
analysis techniques that can help detect defects. We briefly indicated how finite-state
verification helped detect process defects in the process definition and in the actual
processes.

Finite-state verification supports checking whether a process satisfies certain
properties, but it assumes that all agents involved in the process perform their tasks
without errors. Other types of analysis, such as fault tree analysis (29), consider what
happens if tasks are not done correctly. We have explored automatically generating a
fault tree from a Little-JIL process definition and then using the fault tree to identify
single points of failure and other vulnerabilities (30). Our studies of delays in a hospi-
tal Emergency Department have underscored the potential for resource management
and discrete event simulation to improve efficiency in medical processes (31).

This work has shown considerable promise and has suggested extensions in sev-
eral directions. Further research should provide insights into how process definition
and analysis technology can be used to improve medical processes.

Acknowledgments

This research was funded by the US National Science Foundation under Award No.
CCF-0427071 and by the U. S. Department of Defense/Army Research Office under
Awards No. DAAD19-03-1-0133 and DAAD19-01-1-0564. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-

11

standing any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the U.S.
NSF, U. S. DOD/Army Research Office, or the U.S. Government.

We gratefully acknowledge the contributions of Sandy Wise, Barbara Lerner, and
Aaron Cass, who worked on the development of Little-JIL, of Rachel Cobleigh and
Irene Ros, who helped elicit the chemotherapy process and properties, and of Ann
Garbecki, Gina Parisi, Sally Irelan, Gary Bessette and other members of the staff of
the D’Amour Center for Cancer Care, who graciously donated their time and exper-
tise.

Correspondence to:
Stefan Christov
316 Department of Computer Science
University of Massachusetts at Amherst
Amherst, MA 01003, USA
Tel: +1 413 545 2146
Fax: +1 413 545 1249
E-mail: christov@cs.umass.edu

References

1. Kohn LT, Corrigan JM, Donaldson MS, editors. To Err is Human: Building a Safer Health
System. Washington, DC: National Academies Press; 1999.
2. Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st Cen-
tury. Washington D.C.: National Academies Press; 2001.
3. Deming WE. Out of the Crisis. Cambridge: MIT Press; 1982.
4. Shewhart WA. Economic Control of Quality of Manufactured Product: D. Van Nostrand
Co.; 1931.
5. Cobleigh RL, Avrunin GS, Clarke LA. User Guidance for Creating Precise and Accessible
Property Specifications. ACM Symp on the Foundations of Software Engineering; 2006; Port-
land, OR 2006. p. 208-18.
6. Dwyer MB, Clarke LA, Cobleigh JM, Naumovich G. Flow Analysis for Verifying Proper-
ties of Concurrent Software Systems. ACM Trans on Software Engineering and Methodology.
2004;13(4):359-430.
7. Holzmann GJ. The SPIN Model Checker: Addison-Wesley; 2004.
8. Boose ER, Ellison AM, Osterweil LJ, Clarke L, Podorozhny R, Hadley JL, et al. Ensuring
Reliable Datasets for Environmental Models and Forecasts. Ecological Informatics.
2007;2:237-47.
9. Schweik CM, Osterweil LJ, Sondheimer N, Thomas C. Analyzing Processes for E-
Government Development: The Emergence of Process Modeling Languages. J of E-
Government. 2004;1(4):63-89.
10. Cass AG, Lerner BS, McCall EK, Osterweil LJ, Stanley M. Sutton J, Wise A. Little-
JIL/Juliette: A Process Definition Language and Interpreter. Intl Conf on Software Engineer-
ing; 2000; Limerick, Ireland; 2000. p. 754-8.
11. Wise A. Little-JIL 1.5 Language Report: Department of Computer Science, U. of Massa-
chusetts, Amherst (UM-CS-2006-51); 2006.

12

12. Chen B, Avrunin GS, Henneman EA, Clarke LA, Osterweil LJ, Henneman PL. Analyzing
Medical Processes. Intl Conf on Software Engineering; 2008 May; Leipzig, Germany; 2008. p.
623-32.
13. Shahar Y, Miksch S, Johnson P. The Asgaard Project: A Task-Specific Framework for the
Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intel in Medicine.
1998:29-51.
14. Tu SW, Musen MA. A Flexible Approach to Guideline Modeling. Am Medical Informat-
ics Assoc Symp; 1999; 1999. p. 420-4.
15. Molino G, Terenziani P, Montani S, A. Bottrighi, Torchio. M. Glare: A Domain-
Independent System for Acquiring, Representing and Executing Clinical Guidelines. Am
Medical Informatics Association Symp Supplement. 2006.
16. Peleg M, Boxwala A, Ogunyemi O, Zeng Q, Tu S, Lacson R, et al. GLIF3: The Evolution
of a Guideline Representation Format. Am Medical Informatics Association Symp. 2000:645–
9.
17. Sutton DR, Fox J. The Syntax and Semantics of the PROforma Guideline Modeling Lan-
guage. J of Am Medical Informatics Association. 2003:433-43.
18. Protocure II. 2006 [cited; Available from: http://www.protocure.org]
19. ten Teije A, Marcos M, Balser M, van Croonenborg J, Duelli C, van Harmelen F, et al.
Improving Medical Protocols by Formal Methods. Artif Intel in Medicine. 2006;36(3):193-209.
20. Baumler S, Balser M, Dunets A, Reif W, Schmitt. J. Verification of Medical Guidelines by
Model Checking—A Case Study. SPIN 2006, Springer-Verlag LNCS. 2006;3925.
21. Balser M, Reif W, Schellhorn G, Stenzel K, Thums A. Formal System Development with
KIV. Fundamental Approaches to Software Engineering, Springer-Verlag LNCS; 2000; 2000.
p. 363–6.
22. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, et al. NuSMV
Version 2: An OpenSource Tool for Symbolic Model Checking. Computer Aided Verification,
Springer-Verlag LNCS. 2002;2404: 359–65.
23. Noumeir R. Radiology Interpretation Process Modeling. J of Biomedical Informatics.
2006;39(2):103-14.
24. Ruffolo M, Curio R, Gallucci L. Process Management in Health Care: A System for Pre-
venting Risks and Medical Errors. Business Process Mgmt; 2005; 2005. p. 334-43.
25. Voak D, Chapman JF, Phillips P. Quality of Transfusion Practice Beyond the Blood Trans-
fusion Laboratory Is Essential to Prevent ABO-Incompatible Death. Transfusion Medicine.
2000;10:95-6.
26. Battles JB, Kaplan HS, van der Schaaf TW, Shea CE. The Attributes of Medical Event
Reporting Systems for Transfusion Medicine. Arch Pathology Laboratory Medicine.
1998;122:231-8.
27. Galel SA, Richards CA. Practical Approaches to Improve Laboratory Performance and
Transfusion Safety. Am J of Clinical Pathology. 1997;107 (Suppl 1):S43-S9.
28. van der Gaag LC, Renooji S, Witteman CLM, Aleman BMP, Taal BG. Probabilities for a
Probabilistic Network: A Case-Study in Oesophageal Cancer. Artif Intel in Medicine.
2002;25(2):123-48.
29. Vesely W, Goldberg F, Roberts N, Haasl D. Fault Tree Handbook Washington, D.C.: U.S.
Nuclear Regulatory Commission; 1981 January.
30. Chen B, Avrunin GS, Clarke LA, Osterweil LJ. Automatic Fault Tree Derivation from
Little-JIL Process Definitions. 2006 Software Process Workshop and 2006 Process Simulation
Workshop; 2006 May 20-22; Shanghai, China: Springer-Verlag LNCS; 2006. p. 150-8.
31. Raunak MS, Osterweil LJ. Effective Resource Allocation for Process Simulation: A Posi-
tion Paper. Intl Workshop on Software Process Simulation and Modeling; 2005 May 14-15; St.
Louis, MO; 2005.

