
Data- and Workload-Aware Algorithm for Range

Queries: Implementation

October 18, 2014

This document introduces usage details of package ”dawa”, which includes
implementations of algorithms in A Data- and Workload-Aware Algorithm for
Range Queries Under Differential Privacy as well as some other related algo-
rithms.

1 Install

Run setup.sh from the base directory

2 Requirements

Tested with: Python 2.6.6/2.7.1, Numpy 1.9.1, Scipy 0.11.0, Swig 2.0.4.

3 Quick Start

3.1 Import packages

If the source code is in the base directory of dawa:

import i n t e r f a c e as dawa
import query # query genera t ion

If the source code is outside of the base directory of dawa:

import dawa
from dawa import query # query genera t ion

3.2 Use predefined algorithms

hatx = dawa . Algorithm [ name ] . Run(Q, x , e p s i l o n )

Right now the valid name strings are (case insensitive):
dawa: the data- and workload- aware algorithm in [1].

1



efpa: the EFPA algorithm from [2]

identity: using Laplace mechanism to ask each count of the data vector.

mwem: the MEWM algorithm from [4]

p-hp: the P-HP algorithm from [2]

privelet: the Privelet algorithm from [6]

structurefirst: the Mean Structure First algorithm from [7]

3.3 Generate queries

Identity queries: all identity queries on a domain with size n.

Q = query . I d e n t i t y (n)

Random range queries: m random range queries on a domain with size n.

Q = query . RandomRange(n , m)

Random range queries with fixed size: m random range queries on a do-
main with size n with length l.

Q = query . F ixS i ze (n , m, l )

Random clustered range queries: randomly select k centers on a domain
with size n. For each cluster center c, m range queries are sampled as
[c − |Xl|, c + |Xr|] where Xl and Xr are independent random variables
from a normal distribution with a standard deviation of dev.

Q = query . RandomCenter (n , m, k , stdev )

3.4 Run Tests

To run t tests (default: 1) on a list of algorithms algs using query set Q, data
vector x, privacy budget ε, and random seed seed (default: no seed):

r e s = dawa . Test (Q, x , ep s i l on , a lgs , ntest , seed )

E.g. run 5 tests with dawa, mwem and identity using 10 random range queries
on domain with size 32, data vector x privacy budget 1:

Q = query . RandomRange (32 , 10)
r e s = dawa . Test (Q, x , 1 , [ ‘ dawa ’ , ‘mwem’ , ‘ i d e n t i t y ’ ] , 5 )

res is a dict object with 3 keys: l0, l1, l2, which stores the L0 (max of absolute
value), L1 (sum of absolute value), L2 (root of sum of squares) distance between
the vector of true answers and the vector of noisy answers for each algorithm
and each test.

2



4 Customize algorithms

Advanced users can also customize algorithms using the following method:

a l g = dawa . Algor i thmBui lder ( p name , p argv , e name , e argv , r a t i o ) .

The meaning of parameters are:

p name: name of the partition engine, can be None.

p argv: parameters of the partition engine. Useless if p name is None.

e name: name of the estimate engine.

e argv: parameters of the estimate engine.

ratio: ratio of the privacy budget to be used for the partition engine, which
is 0.5 by default. Useless if p name is None.

A partition algorithm is generated using the partition engine and given param-
eters. An estimate algorithm is generated using the estimate engine and given
parameters. The final algorithm will first partition the data using the partition
algorithm and then estimate each partition using the estimation algorithm. If
the partition algorithm is None, the final algorithm is equivalent to the estimate
algorithm. E.g.

a l g = dawa . Algor i thmBui lder ( ’ l 1 p a r t i t i o n ’ , None , ’mwem’ , [ 2 0 ] , 0 . 5 )

creates an algorithm that first uses half of its privacy budget to partition the
dataset using the L1 partition algorithm and then estimates each partition by an
MWEM algorithm with 20 rounds. More detailed description on partition/es-
timate engines and their parameters can be found later in the same section.

4.1 Partition engines[1]

Right now, there are two partition engines implemented: l1partition and l1approx,
which are the partition algorithm and the approximated partition algorithm.
There is no parameter for those engines.

4.2 Estimate engines

The package implements and integrates several estimate algorithms. The corre-
sponding estimate engines and their parameters can be found by the following
command:

dawa . EstimateEngine ( )

The currently implemented estimate engines are as following. Numbers in brack-
ets are default values for the parameters.

privelet [6]: estimate a dataset by asking its wavelet parameters.

3



EFPA [2]: estimate engine with the EFPA algorithm.

P-HP [2]: estimate engine with P-HP algorithm.

mwem simple [4] : basic Multiplictive weight mechanism engine.
Parameters:

nrounds(10) - how many rounds are MWEM run.
ratio(0.5) - the ratio of privacy budget used for query selection.

structurefirst [7]: estimate engine with the structure first algorithm.

mwem [4] : MWEM engine with the enhanced update method developed
by Frank McSherry.

Parameters:
nrounds(10) - how many rounds are MWEM run.
ratio(0.5) - the ratio of privacy budget used for query selection.
updateround(100) - the number of iterations in each update.

greedyH [1]: assign weights to hierarchical queries greedily according to
the given workload. Answer weighted queries and generate an estimated
dataset using least square estimator.

Parameters:
branch(2) - the branching factor of the hierarchy
granu(100) - the granularity in numerical search

uniformH [5]: the hierarchy engine with no decay

geometricH [3]: geometric hierarchy engine with the privacy budget de-
cayed with depth.

Parameters:
decay(21/3) - the ratio of privacy budget decayed with depth.

identity: estimate a dataset by asking each of its entry with Laplace mech-
anism.

References

[1] C. Li, M. Hay, G. Miklau, and Y. Wang. A Data- and Workload-Aware
Query Answering Algorithm for Range Queries Under Differential Privacy.
In PVLDB, 7(5): 341–352, 2014

[2] G. Ács, C. Castelluccia, and R. Chen. Differentially private histogram
publishing through lossy compression. In ICDM, pages 1–10, 2012.

[3] G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu. Differen-
tially private spatial decompositions. In ICDE, pages 20–31, 2012.

[4] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm
for differentially private data release. In NIPS, pages 2348–2356, 2012.

4



[5] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially private histograms through consistency. PVLDB, 3(1-2):1021–
1032, 2010.

[6] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet trans-
forms. In ICDE, pages 225–236, 2010.

[7] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Differentially
private histogram publication. The VLDB Journal, pages 1–26, 2013.

5


	Install
	Requirements
	Quick Start
	Import packages
	Use predefined algorithms
	Generate queries
	Run Tests

	Customize algorithms
	Partition engines
	Estimate engines


