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Abstract

Methods for sequential decision-making are often built upon a foundational assump-
tion that the underlying decision process is stationary. This limits the application
of such methods because real-world problems are often subject to changes due to
external factors (passive non-stationarity), changes induced by interactions with
the system itself (active non-stationarity), or both (hybrid non-stationarity). In this
work, we take the first steps towards the fundamental challenge of on-policy and
off-policy evaluation amidst structured changes due to active, passive, or hybrid
non-stationarity. Towards this goal, we make a higher-order stationarity assump-
tion such that non-stationarity results in changes over time, but the way changes
happen is fixed. We propose, OPEN, an algorithm that uses a double application
of counterfactual reasoning and a novel importance-weighted instrument-variable
regression to obtain both a lower bias and a lower variance estimate of the structure
in the changes of a policy’s past performances. Finally, we show promising results
on how OPEN can be used to predict future performances for several domains
inspired by real-world applications that exhibit non-stationarity.

1 Introduction

Methods for sequential decision making are often built upon a foundational assumption that the
underlying decision process is stationary [Sutton and Barto, 2018]. While this assumption was a
cornerstone when laying the theoretical foundations of the field, and while is often reasonable, it
is seldom true in practice and can be unreasonable [Dulac-Arnold et al., 2019]. Instead, real-world
problems are subject to non-stationarity that can be broadly classified as (a) Passive: where the
changes to the system are induced only by external (exogenous) factors, (b) Active: where the changes
result due to the agent’s past interactions with the system, and (c) Hybrid: where both passive and
active changes can occur together [Khetarpal et al., 2020].

There are many applications that are subject to active, passive, or hybrid non-stationarity, and where
the stationarity assumption may be unreasonable. Consider methods for automated healthcare where
we would like to use the data collected over past decades to find better treatment policies. In such
cases, not only might there have been passive changes due to healthcare infrastructure changing over
time, but active changes might also occur because of public health continuously evolving based on
the treatments made available in the past, thereby resulting in hybrid non-stationarity. Similar to
automated healthcare, other applications like online education, product recommendations, and in
fact almost all human-computer interaction systems need to not only account for the continually
drifting behavior of the user demographic, but also how the preferences of users may change due
to interactions with the system [Theocharous et al., 2020]. Even social media platforms need to
account for the partisan bias of their users that change due to both external political developments
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and increased self-validation resulting from previous posts/ads suggested by the recommender system
itself [Cinelli et al., 2021, Gillani et al., 2018]. Similarly, motors in a robot suffer wear and tear over
time not only based on natural corrosion but also on how vigorous past actions were.

However, conventional off-policy evaluation methods [Precup, 2000, Jiang and Li, 2015, Xie et al.,
2019] predominantly focus on the stationary setting. These methods assume availability of either
(a) resetting assumption to sample multiple sequences of interactions from a stationary environment
with a fixed starting state distribution (i.e., episodic setting), or (b) ergodicity assumption such that
interactions can be sampled from a steady-state/stationary distribution (i.e., continuing setting). For
the problems of our interest, methods based on these assumptions may not be viable. For e.g., in
automated healthcare, we have a single long history for the evolution of public health, which is
neither in a steady state distribution nor can we reset and go back in time to sample another history of
interactions.

As discussed earlier, because of non-stationarity the transition dynamics and reward function in the
future can be different from the ones in the past, and these changes might also be dependent on
past interactions. In such cases, how do we even address the fundamental challenge of off-policy
evaluation, i.e., using data from past interactions to estimate the performance of a new policy in
the future? Unfortunately, if the underlying changes are arbitrary, even amidst only passive non-
stationarity it may not be possible to provide non-vacuous predictions of a policy’s future performance
[Chandak et al., 2020a].

Thankfully, for many real-world applications there might be (unknown) structure in the underlying
changes. In such cases, can the effect of the underlying changes on a policy’s performance be inferred,
without requiring estimation of the underlying model/process? Prior work has only shown that this is
possible in the passive setting. This raises the question that we aim to answer:

How can one provide a unified procedure for (off) policy evaluation amidst active,
passive, or hybrid non-stationarity, when the underlying changes are structured?

Contributions: To the best of our knowledge, our work presents the first steps towards addressing
the fundamental challenge of off-policy evaluation amidst structured changes due to active or hybrid
non-stationarity. Towards this goal, we make a higher-order stationarity assumption, under which
the non-stationarity can result in changes over time, but the way changes happen is fixed. Under
this assumption, we propose a model-free method that can infer the effect of the underlying non-
stationarity on the past performances and use that to predict the future performances for a given
policy. We call the proposed method OPEN: off-policy evaluation for non-stationary domains. On
domains inspired by real-world applications, we show that OPEN often provides significantly better
results not only in the presence of active and hybrid non-stationarity, but also for the passive setting
where it even outperforms previous methods designed to handle only passive non-stationarity.

OPEN primarily relies upon two key insights: (a) For active/hybrid non-stationarity, as the underlying
changes may dependend on past interactions, the structure in the changes observed when executing the
data collection policy can be different than if one were to execute the evaluation policy. To address this
challenge, OPEN makes uses counterfactual reasoning twice and permits reduction of this off-policy
evaluation problem to an auto-regression based forecasting problem. (b) Despite reduction to a more
familiar auto-regression problem, in this setting naive least-squares based estimates of parameters
for auto-regression suffers from high variance and can even be asymptotically biased. Finally, to
address this challenge, OPEN uses a novel importance-weighted instrument-variable (auto-)regression
technique to obtain asymptotically consistent and lower variance parameter estimates.

2 Related Work

Off-policy evaluation (OPE) is an important aspect of reinforcement learning [Precup, 2000, Thomas
et al., 2015, Sutton and Barto, 2018] and various techniques have been developed to construct
efficient estimators for OPE [Jiang and Li, 2015, Thomas and Brunskill, 2016, Munos et al., 2016,
Harutyunyan et al., 2016, Espeholt et al., 2018, Xie et al., 2019]. However, these work focus on the
stationary setting. Similarly, there are various methods for tackling non-stationarity in the bandit
setting [Moulines, 2008, Besbes et al., 2014, Seznec et al., 2018, Wang et al., 2019a]. In contrast, the
proposed work focuses on methods for sequential decision making.
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Literature on off-policy evaluation amidst non-stationarity for sequential decision making is sparse.
Perhaps the most closely related works are by Thomas et al. [2017], Chandak et al. [2020b], Xie et al.
[2020a], Poiani et al. [2021], Liotet et al. [2021]. While these methods present an important stepping
stone, such methods are for passive non-stationarity and, as we discuss using the toy example in
Figure 1, may result in undesired outcomes if used as-is in real-world settings that are subject to
active or hybrid non-stationarity.

Figure 1: RoboToy domain.

Consider a robot that can perform a task each day either
by ‘walking’ or ‘running’. A reward of 8 is obtained upon
completion using ‘walking’, but ‘running’ finishes the task
quickly and results in a reward of 10. However, ‘running’
wears out the motors, thereby increasing the time to finish
the task the next day and reduces the returns for both
‘walking’ and ‘running’ by a small factor, α ∈ (0, 1).

Here, methods for tackling passive non-stationarity will track the best policy under the assumption
that the changes due to damages are because of external factors and would fail to attribute the cause
of damage to the agent’s decisions. Therefore, as on any given day ‘running’ will always be better,
every day these methods will prefer ‘running’ over ‘walking’ and thus aggravate the damage. Since
the outcome on each day is dependent on decisions made during previous days this leads to active
non-stationarity, where ‘walking’ is better in the long run. Finding a better policy first requires a
method to evaluate a policy’s (future) performance, which is the focus of this work.

Notice that the above problem can also be viewed as a task with effectively a single lifelong episode.
However, as we discuss later in Section 4, approaches such as modeling the problem as a large
stationary POMDP or as a continuing average-reward MDP with a single episode may not be viable.
Further, non-stationarity can also be observed in multi-agent systems and games due to different
agents/players interacting with the system. However, often the goal in these other areas is to search
for (Nash) equilibria, which may not even exist under hybrid non-stationarity. Non-stationarity may
also result due to artifacts of the learning algorithm even when the problem is stationary. While
relevant, these other research areas are distinct from our setting of interest and we discuss them and
others in more detail in Appendix B.

3 Non-Stationary Decision Processes

We build upon the formulation used by past work [Xie et al., 2020a, Chandak et al., 2020b] and
consider that the agent interacts with a lifelong sequence of partially observable Markov decision
processes (POMDPs), (Mi)

∞
i=1. However, unlike prior problem formulations, we account for active

and hybrid non-stationarity by considering POMDP Mi+1 to be dependent on both on the POMDP
Mi and the decisions made by the agent while interacting with Mi. We provide a control graph for
this setup in Figure 2. For simplicity of presentation, we will often ignore the dependency of Mi+1

on Mi−k for k > 0, although our results can be extended for settings with k > 0.

Notation: Let M be a finite set of POMDPs. Each POMDP Mi ∈ M is a tuple
(O,S,A,Ωi, Pi, Ri, µi), where O is the set of observations, S is the set of states, and A is the
set of actions, which are the same for all the POMDPs inM. For simplicity of notation, we assume
M,S,O,A are finite sets, although our results can be extended to settings where these sets are infinite
or continuous. Let Ωi : S×O → [0, 1] be the observation function, Pi : S×A×S → [0, 1] be the tran-
sition function, µi : S → [0, 1] be the starting state distribution, and Ri : S ×A → [−Rmax, Rmax]
be the reward function with 0 ≤ Rmax <∞.

Let π : O ×A → [0, 1] be any policy and Π be the set of all policies. Let Hi := (Oti , A
t
i, R

t
i)
T
t=1 be

a sequence of at most T interactions in Mi, where Oti , A
t
i, R

t
i are the random variables corresponding

to the observation, action, and reward at the step t. Let Gi :=
∑T
t=1R

t
i be an observed return

and Ji(π) := Eπ[Gi|Mi] be the performance of π on Mi. Let H be the set of possible interaction
sequences, and finally let T : M×H ×M → [0, 1] be the transition function that governs the
non-stationarity in the POMDPs. That is, T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h).
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- Allows resampling
+ No structural assumptions

+ No resampling possible
- Structural assumptions

Stationary decision process Non-stationary decision process

Figure 2: Control Graph for the non-stationary pro-
cess. See text for symbol definitions.

Figure 2 (Left) depicts the control graph for
a stationary POMDP, where each column cor-
responds to one time step. Here, multiple, in-
dependent episodes from the same POMDP
can be resampled. (Right) Control graph that
we consider for a non-stationary decision pro-
cess, where each column corresponds to one
episode. Here, the agent interacts with a single
sequence of related POMDPs (Mi)

n
i=1. Ab-

sence or presence of the red arrows indicates
whether the change from Mi to Mi+1 is inde-
pendent of the decisions in Mi (passive non-
stationarity) or not (active non-stationarity).

Problem Statement: We look at the fundamental problem of evaluating the performance of a policy
π in the presence of non-stationarity. Let (Hi)

n
i=1 be the data collected in the past by interacting using

policies (βi)
n
i=1. Let Dn be the dataset consisting of (Hi)

n
i=1 and the probabilities of the actions

taken by (βi)
n
i=1. GivenDn, we aim to evaluate the expected future performance of π if it is deployed

for the next L episodes (each a different POMDP), that is J (π) := Eπ
[∑n+L

k=n+1 Jk(π)
∣∣∣(Hi)

n
i=1

]
.

We call it the on-policy setting if ∀i, βi = π, and the off-policy setting otherwise. Notice that even in
the on-policy setting, naively aggregating observed performances from (Hi)

n
i=1 may not be indicative

of J (π) as Mk for k > n may be different than M ∈ (Mi)
n
i=1 due to non-stationarity.

4 Understanding Structural Assumptions

A careful reader would have observed that instead of considering interactions with a sequence of
POMDPs (Mi)

n
i=1 that are each dependent on the past POMDPs and decisions, an equivalent setup

might have been to consider a ‘chained’ sequence of interactions (H1, H2, ...,Hn) as a single episode
in a ‘mega’ POMDP comprised of all M ∈ M. Consequently, J (π) would correspond to the
expected future return given (Hi)

n
i=1. Tackling this single long sequence of interactions using the

continuing/average-reward setting is not generally viable because methods for these settings rely on
an ergodicity assumption (which implies that all states can always be revisited) that may not hold in
the presence of non-stationarity. For instance, in the earlier example of automated healthcare, it is not
possible to revisit past years.

To address the above challenge, we propose introducing a different structural assumption. Particularly,
framing the problem as a sequence of POMDPs allows us to split the single sequence of interac-
tions into multiple (dependent) fragments, with additional structure linking together the fragments.
Specifically, we make the following intuitive assumption.

Assumption 1. ∀m ∈M such that the performance J(π) associated with m is j,

∀π, π′ ∈ Π2,∀i, Pr(Ji+1(π) = ji+1|Mi = m;π′) = Pr(Ji+1(π) = ji+1|Ji(π) = j;π′). (1)

Assumption 1 characterizes the probability that π’s performance will be ji+1 in the i+ 1th episode
when the policy π′ is executed in the ith episode. To understand Assumption 1 intuitively, consider
a ‘meta-transition’ function that characterizes Pr(Ji+1(π)|Ji(π), π′) similar to how the standard
transition function in an MDP characterizes Pr(St+1|St, At). While the underlying changes actually
happen via T , Assumption 1 imposes the following two conditions: (a) A higher-order stationarity
condition on the meta-transitions under which non-stationarity can result in changes over time, but
the way the changes happen is fixed, and (b) Knowing the past performance(s) of a policy π provides
sufficient information for the meta-transition function to model how the performance will change
upon executing any (possibly different) policy π′. For example, in the earlier toy robot domain, given
the current performance there exists an (unknown) oracle that can predict the performance for the
next day if the robot decides to ‘run’/‘walk’.

Assumption 1 is beneficial as it implicitly captures the effect of both the underlying passive and
active non-stationarity by modeling the conditional distribution of the performance Ji+1(π) given
Ji(π), when executing any (different) policy π′. At the same time, notice that it generalizes (a) the
stationary setting, where ∀π ∈ Π, ∀i > 0, Ji+1(π) = Ji(π), and (b) only passive non-stationarity,
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which is a special case of (1) wherein π′ does not influence the outcome, i.e.,

∀πa, πb ∈ Π2, ∀i > 0, Pr(Ji+1(π) = Ji+1|Ji(π) = j;πa) = Pr(Ji+1(π) = Ji+1|Ji(π) = j;πb).

Remark 1. In some cases, it may be beneficial to relax Assumption 1 such that instead of using
Pr(Ji+1(π)|Ji(π);π′) in (1), one considers Pr(Ji+1(π)|(Ji−k(π))pk=0;π′). This can be considered
similar to the p-Markov MDP where the transitions are characterized using Pr(St+1|(St−i)pi=0, At).
While we consider this general setting for our empirical results, for simplicity, to present the key ideas
we will consider (1). We provide a detailed discussion on cases where we expect such an assumption
to be (in)valid, and also other potential assumptions in Appendix C.

5 Model-Free Policy Evaluation

Figure 3: High-level idea.

In this section we discuss how under Assumption 1, we can
perform model-free off-policy evaluation amidst passive,
active, or hybrid non-stationarity. The high level idea can
be decomposed into the following: (a) Obtain estimates
of (Ji(π))ni=1 using (Hi)

n
i=1 (red arrows in Figure 3), and

(b) Use the estimates of (Ji(π))ni=1 to infer the effect of
the underlying non-stationarity on the performance, and
use that to predict (Ji(π))n+L

i=n+1 (blue arrows in Figure 3).

5.1 Counterfactual Reasoning (Ji(π))ni=1 could have been directly estimated if we had access
to (Mi)

n
i=1. However, how do we estimate (Ji(π))ni=1 when we only have (Hi)

n
i=1 collected using

interactions via possibly different data collecting policies (βi)
n
i=1?

To estimate (Ji(π))ni=1, we use the collected data Dn and aim to answer the following counterfactual
question: what would the performance of π would have been, if π was used to interact with Mi

instead of βi? To answer this, we make the following standard support assumption [Thomas et al.,
2015, Thomas and Brunskill, 2016, Xie et al., 2019] that says that any action that is likely under π is
also sufficiently likely under the policy βi for all i.

Assumption 2. ∀o ∈ O,∀a ∈ A, and ∀i ≤ n, π(o,a)
βi(o,a) is bounded above by a (unknown) constant c.

Under Assumption 2, an unbiased estimate of Ji(π) can be obtained using common off-policy
evaluation methods like importance sampling (IS) or per-decision importance sampling (PDIS)

[Precup, 2000], ∀i, Ĵi(π) :=
∑T
t=1 ρ

t
iR

t
i, where, ρti :=

∏t
j=1

π(Oj
i ,A

j
i )

βi(O
j
i ,A

j
i )
. This Ĵi(π) provides an

estimate of Ji(π) associated with each Mi and policy π, as needed for the red arrows in Figure 3.

5.2 Double Counterfactual Reasoning Having obtained the estimates for (Ji(π))ni=1, we now
aim to estimate how the performance of π changes due to the underlying non-stationarity. Recall
that under active or hybrid non-stationarity, changes in a policy’s performance due to the underlying
non-stationarity is dependent on the past actions. From Assumption 1, let

∀i > 0, Fπ(x, π′, y) := Pr(Ji+1(π) = y|Ji(π) = x;π′)

denote how the performance of π changes between episodes, if π′ was executed. Here Ji+1(π) is
a random variable because of stochasticity in Hi (i.e., how π′ interacts in Mi), as well as in the
meta-transition from POMDP Mi to Mi+1. Similarly, let

∀i > 0, f(Ji(π), π′; θπ) := Eπ′ [Ji+1(π)|Ji(π)] =
∑

y∈R
Fπ(Ji(π), π′, y)y

be some (unknown) function parameterized by θπ ∈ Θ, which denotes the expected performance of
π in episode i+ 1, if in episode i, π’s performance was Ji(π) and π′ was executed. Parameters θπ
depend on π and thus f can model different types of changes to the performance of different policies.

Recall from Figure 3 (blue arrows), if we can estimate f(·, π; θπ) to infer how Ji(π) changes due to
the underlying non-stationarity when interacting with π, then we can use it to predict (Ji(π))n+L

i=n+1
when π is deployed in the future. In the following, we will predominantly focus on estimating
f(·, π; θπ) using past data Dn. Therefore, for brevity we let f(·; θπ) := f(·, π; θπ).
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If pairs of (Ji(π), Ji+1(π)) are available when the transition between Mi and Mi+1 occurs due to
execution of π, then one could auto-regress Ji+1(π) on Ji(π) to estimate f(·; θπ) and model the
changes in the performance of π. However, the sequence (Ĵi(π))ni=1 obtained from counterfactual
reasoning cannot be used as-is for auto-regression. This is because the changes that occurred between
Mi and Mi+1 are associated with the execution of βi, not π. For example, recall the toy robot
example in Figure 1. If data was collected by mostly ‘running’, then the performance of ‘walking’
would decay as well. Directly auto-regressing on the past performances of ‘walking’ would result in
how the performance of ‘walking’ would change when actually executing ‘running’. However, if we
want to predict performances of ‘walking’ in the future, what we actually want to estimate is how the
performance of ‘walking’ changes if ‘walking’ is actually performed.

To resolve the above issue, we ask another counter-factual question: What would the performance of
π in Mi+1 have been had we executed π, instead of βi, in Mi? In the following theorem we show
how this question can be answered with a second application of the importance ratio ρi := ρTi .

Theorem 1. Under Assumptions 1 and 2, ∀m ∈M such that the performance J(π) associated with
m is j, Eπ [Ji+1(π)|Ji(π) = j] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣Mi = m
]
.

See Appendix D.1 for the proof. Intuitively, as βi and βi+1 were used to collect the data in i and
i + 1th episodes, respectively, Theorem 1 uses ρi to first correct for the mismatch between π and
βi that influences how Mi changes to Mi+1 due to interactions Hi. Secondly, Ĵi+1 corrects for the
mismatch between π and βi+1 for the sequence of interactions Hi+1 in Mi+1.

5.3 Importance-Weighted IV-Regression An important advantage of Theorem 1 is that given
Ji(π), ρiĴi+1(π) provides an unbiased estimate of Eπ [Ji+1(π)|Ji(π)], even though π may not have
been used for data collection. This permits using Yi := ρiĴi+1(π) as a target for predicting the next
performance given Xi := Ji(π), i.e., to estimate f(Ji(π); θπ) through regression on (Xi, Yi) pairs.

However, notice that performing regression on the pairs (Xi = Ji(π), Yi = ρĴi+1(π))n−1
i=1 may

not be directly possible as we do not have Ji(π); only unbiased estimates Ĵi(π) of Ji(π). This
is problematic because in least-squares regression, while noisy estimates of the target variable Yi
are fine, noisy estimates of the input variable Xi may result in estimates of θπ that are not even
asymptotically consistent even when the underlying f is a linear function of its inputs. To see this
clearly, consider the following naive estimator,

θ̂naive ∈ argmin
θ∈Θ

∑n−1

i=1

(
f
(
Ĵi(π); θ

)
− ρiĴi+1(π)

)2

.

Because Ĵi(π) is an unbiased estimate of Jπ, without loss of generality, let Ĵi(π) = Ji(π) + ηi,
where ηi is mean zero noise. Let N := [η1, η2, ..., ηn−1]> and J := [J1(π), J2(π), ..., Jn−1(π)]>.
θnaive can now be expressed as (see Appendix D.2),

θ̂naive
a.s.−→

(
J>J + N>N

)−1 J>Jθπ �
�a.s.−→ θπ. (2)

Observe that N>N in (2) relates to the variances of the mean zero noise variables ηi. The greater the
variances, the more θ̂naive would be biased towards zero (if ∀i, ηi = 0, then the true θπ is trivially
recovered). Intuitively, when the variance of ηi is high, noise dominates and the structure in the
data gets suppressed even in the large-sample regime. Unfortunately, the importance sampling based
estimator Ĵi(π) in the sequential decision making setting is infamous for extremely high variance
[Thomas et al., 2015]. Therefore, θ̂naive can be extremely biased and will not be able to capture the
trend in how performances are changing, even in the limit of infinite data and linear f . The problem
may be exacerbated when f is non-linear.

5.3.1 Bias Reduction To mitigate the bias stemming from noise in input variables, we introduce a
novel instrument variable (IV) [Pearl et al., 2000] regression method for tackling non-stationarity.
Instrument variables Z represent some side-information and were originally used in the causal
literature to mitigate any bias resulting due to spurious correlation, caused by unobserved confounders,
between the input and the target variables. For mitigating bias in our setting, IVs can intuitively be
considered as some side-information to ‘denoise’ the input variable before performing regression.
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For this IV-regression, an ideal IV is correlated with the input variables (e.g., Ĵi(π)) but uncorrelated
with the noises in the input variable (e.g., ηi).

We propose leveraging statistics based on past performances as an IV for Ĵi(π). For instance, using
Zi := Ĵi−1(π) as an IV for Ĵi(π). Notice that while correlation between Ji−1(π) and Ji(π) can
directly imply correlation between Ĵi−1(π) and Ĵi(π), values of Ji−1(π) and Ji(π) are dependent
on non-stationarity in the past. Therefore, we make the following assumption, which may easily be
satisfied when the consecutive performances do not change arbitrarily.

Assumption 3. ∀i, Cov
(
Ĵi−1(π), Ĵi(π)

)
6= 0.

However, notice that the noise in Ĵi(π) can be dependent on Ĵi−1(π). This is because non-stationarity
can make Hi−1 and Hi dependent, which are in turn used to estimate Ĵi−1(π) and Ĵi(π), respec-
tively. Nevertheless, perhaps interestingly, we show that despite not being independent, Ĵi−1(π) is
uncorrelated with the noise in Ĵi(π).

Theorem 2. Under Assumptions 1 and 2, ∀i, Cov
(
Ĵi−1(π), Ĵi(π)− Ji(π)

)
= 0.

See Appendix D.3 for the proof. Finally, as IV regression requires learning an additional function
g := R → R parameterized by ϕ ∈ Ω (intuitively, think of this as a denoising function), we let
Ĵi−1(π) be an IV for Ĵi(π) and propose the following IV-regression based estimator,

ϕ̂n ∈ argmin
ϕ∈Ω

∑n

i=2

(
g
(
Ĵi−1(π);ϕ

)
− Ĵi(π)

)2

(3)

θ̂n ∈ argmin
θ∈Θ

∑n−1

i=2

(
f
(
g
(
Ĵi−1(π); ϕ̂n

)
; θ
)
− ρiĴi+1(π)

)2

. (4)

Theorem 3. Under Assumptions 1, 2, and 3, if f and g are linear functions of their inputs, then θ̂n is
a strongly consistent estimator of θπ , i.e., θ̂n

a.s.−→ θπ . (See Appendix D.3 for the proof.)

Remark 2. Other choices of instrument variables Zi (apart from Zi = Ĵi−1(π)) are also viable. We
discuss some alternate choices in Appendix E. These other IVs can be used in (3) and (4) by replacing
Ĵi−1(π) with the alternative Zi.

Remark 3. As discussed earlier, it may be beneficial to model Ji+1(π) using (Jk(π))ik=i−p+1 with
p > 1. The proposed estimator can be easily extended by making f dependent on multiple past terms
(Xk)ik=i−p+1, where ∀k, Xk := g((Ĵl(π))k−1

l=k−p; φ̂). We discuss this in more detail in Appendix E.
The proposed procedure is also related to methods that use lags of the time series as instrument
variables [Bellemare et al., 2017, Wilkins, 2018, Wang and Bellemare, 2019].

Remark 4. An advantage of the model-free setting is that we only need to consider changes in J(π),
which is a scalar statistic. For scalar quantities, linear auto-regressive models have been known to
be useful in modeling a wide variety of time-series trends. Nonetheless, non-linear functions like
RNNs and LSTMs [Hochreiter and Schmidhuber, 1997] may also be leveraged using deep instrument
variable methods [Hartford et al., 2017, Bennett et al., 2019, Liu et al., 2020, Xu et al., 2020].

As required for the blue arrows in Figure 3, f(·; θ̂n) can now be used to estimate the expected
value Eπ [Ji+1(π)|Ji(π)] under hybrid non-stationarity. Therefore, using f(·; θ̂n) we can now auto-
regressively forecast the future values of (Ji(π))n+L

i=n+1 and obtain an estimate for J (π). A complete
algorithm for the proposed procedure is provided in Appendix E.1.

5.3.2 Variance Reduction As discussed earlier, importance sampling results in noisy estimates of
Ji(π). During regression, while high noise in the input variable leads to high bias, high noise in the
target variables leads to high variance parameter estimates. Unfortunately, (3) and (4) have target
variables containing ρi (and ρi+1) which depend on the product of importance ratios and can thus
result in extremely large values leading to higher variance parameter estimates.

The instrument variable technique helped in mitigating bias. To mitigate variance, we draw inspiration
from the reformulation of weighted-importance sampling presented for the stationary setting by

7



Figure 4: An illustration of the stages in the proposed method for the RoboToy domain of Figure 1.
Here, evaluation policy π chooses to ‘run’ more often, whereas the data collecting policy β chooses
to ‘walk’ more often. (Left) This results in a slow decline of performance for π initially, followed by
a faster decline once π is deployed after episode 2000. The blue and gray curves are unknown to the
algorithm. (Middle) OPEN first uses historical data to obtain counterfactual estimates of Ji(π) for
the past episodes. One can see the high-variance in these estimates (notice the change in the y-scale)
due to the use of importance sampling. (Right) Intuitively, before naively auto-regressing, OPEN first
denoises past performance estimates using the first stage of IV regression (i.e., converts black dots to
green dots). It can be observed that OPEN successfully denoises the importance sampling estimates.
Using these denoised estimates and a second use of counterfactual reasoning, OPEN performs the
second stage of IV regression. It is able to estimate that once π is deployed, performances in the
future will decrease more rapidly compared to what was observed in the past.

Mahmood et al. [2014], and propose the following estimator,

ϕ̃n ∈ argmin
ϕ∈Ω

n∑
i=2

ρ̄i

(
g
(
Ĵi−1(π);ϕ

)
−Gi(π)

)2

, where ρ̄i :=
ρi∑n
j=2 ρj

(5)

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2

ρ†i

(
f
(
g
(
Ĵi−1(π); ϕ̃n

)
; θ
)
−Gi+1(π)

)2

, where ρ†i :=
ρiρi+1∑n−1
j=2 ρjρj+1

(6)

where Gi is the return observed for Mi. Intuitively, instead of importance weighting the target, we
importance weight the squared error, proportional to how likely that error would be if π was used to
collect the data. Since dividing by any constant does not affect ϕ̃n and θ̃n, the choice of ρ̄i and ρ†i
ensures that both ρ̄i and ρ†i ∈ [0, 1], thereby mitigating variance but still providing consistency.

Theorem 4. Under Assumptions 1, 2, and 3, if f and g are linear functions of their inputs, then θ̃n is
a strongly consistent estimator of θπ , i.e., θ̃n

a.s.−→ θπ . (See Appendix D.3 for the proof.)

6 Empirical Analysis

This section presents both qualitative and quantitative empirical evaluations using several environ-
ments inspired by real-world applications that exhibit non-stationarity. In the following paragraphs,
we first briefly discuss different algorithms being compared and answer three primary questions.

1. OPEN: We call our proposed method OPEN: off-policy evaluation for non-stationary domains
with structured passive, active, or hybrid changes. It is based on our bias and variance reduced
estimator developed in (5) and (6). Appendix E.1 contains the complete algorithm.

2. Pro-WLS: For the baseline, we use Prognosticator with weighted least-squares (Pro-WLS)
[Chandak et al., 2020b]. This method is designed to tackle only passive non-stationarity.

3. WIS: A weighted importance sampling based estimator that ignores presence of non-stationarity
completely [Precup, 2000].

Q1. (Qualitative Results) What is the impact of the two stages of the OPEN algorithm?

In Figure 4 we present a step by step breakdown of the intermediate stages of a single run of OPEN
on the RoboToy domain from Figure 1. It can be observed that OPEN is able to extract the effect of

8



Figure 5: Comparison of different algorithms for predicting the future performance of evaluation
policy π on domains that exhibit active/hybrid non-stationarity. On the x-axis is the speed which
corresponds to the rate of non-stationarity; higher speed indicates faster rate of change and a speed of
zero indicates stationary domain. On the y-axes are the absolute bias (Top row) and the mean-squared
error (Bottom row) of the predicted performance estimate (lower is better everywhere). For each
domain, for each speed, for each algorithm, 30 trials were executed.

the underlying active non-stationarity on the performances and also detect that the evaluation policy
π that ‘runs’ more often will cause an active harm, if deployed in the future.

Q2. (Quantitative Results) What is the effect of different types and rates of non-stationarity?

Besides the toy robot from Figure 1, we provide empirical results on three other domains inspired
by real-world applications that exhibit non-stationarity. Appendix E.3 contains details for each,
including how the evaluation policy and the data collecting policy were designed for them.

Non-stationary Mountain Car: In real-world mechanical systems, motors undergo wear and
tear over time based on how vigorously they have been used in the past. To simulate similar
performance degradation, we adapt the classic (stationary) mountain car domain [Sutton and Barto,
2018]. We modify the domain such that after every episode the effective acceleration force is
decayed proportional to the average velocity of the car in the current episode. This results in active
non-stationarity, where the change in the system is based on the actions taken by the agent in the past.

Type-1 Diabetes Management: Personalised automated healthcare systems for individual patients
should account for the physiological and lifestyle changes of the patient over time. To simulate such a
scenario we use an open-source implementation [Xie, 2019] of the U.S. Food and Drug Administration
(FDA) approved Type-1 Diabetes Mellitus simulator (T1DMS) [Man et al., 2014] for the treatment of
Type-1 diabetes, where we induced non-stationarity by oscillating the body parameters (e.g., rate
of glucose absorption, insulin sensitivity, etc.) between two known configurations available in the
simulator. This induces passive non-stationarity, that is, changes are not dependent on past actions.

MEDEVAC: This domain stands for medical evacuation using air ambulances. This domain was
developed by Robbins et al. [2020] for optimally routing air ambulances to provide medical assistance
in regions of conflict. Based on real-data, this domain simulates the arrival of different events, from
different zones, where each event can have different priority levels. Serving higher priority events
yields higher rewards. A good controller decides whether to deploy, and which MEDEVAC to deploy,
to serve any event (at the risk of not being able to serve a new high-priority event if all ambulances
become occupied). Here, the arrival rates of different events can change based on external incidents
during conflict. Similarly, the service completion rate can also change based on how frequently an
ambulance is deployed in the past. To simulate such non-stationarity, we oscillate the arrival rate of
the incoming high-priority events, which induces passive non-stationarity. Further, to induce wear
and tear, we decay the service rate of an ambulance proportional to how frequently the ambulance
was used in the past. This induces active non-stationarity. The presence of both active and passive
changes makes this domain subject to hybrid non-stationarity.
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Figure 5 presents the (absolute) bias and MSE incurred by different algorithms for predicting the
future performance of the evaluation policy π. As expected, the baseline method WIS that ignores
the non-stationarity completely fails to capture the change in performances over time. Therefore,
while WIS works well for the stationary setting, as the rate of non-stationarity increases, the bias
incurred by WIS grows. In comparison, the baseline method Pro-WLS that can only account for
passive non-stationarity captures the trend better than WIS, but still performs poorly in comparison
to the proposed method OPEN that is explicitly designed to handle active/hybrid non-stationarity.
Perhaps interestingly, for the Diabetes domain which only has passive non-stationarity, we observe
that OPEN performs better than Pro-WLS. As we discuss later, this can be attributed to the sensitivity
of Pro-WLS to its hyper-parameters.

While OPEN incorporated one variance reduction technique, it can be noticed when the rate of
non-stationarity is high, variance can sometimes still be high thereby leading to higher MSE. We
discuss potential negative impacts of this in Appendix A. Incorporating (partial) knowledge of the
underlying model and developing doubly-robust version of OPEN could potentially mitigate variance
further. We leave this extension for future work.

Q3. (Ablations Results) How robust are the methods to hyper-parameters?

Due to space constraints, we defer the empirical results and discussion for this to Appendix E.5.
Overall, we observe that the proposed method OPEN being an auto-regressive method can extrapo-
late/forecast better and is thus more robust to hyper-parameters (number of past terms to condition,
as discussed in Remark 3) than Pro-WLS that uses Fourier bases for regression (where the hyper-
parameter is the order of Fourier basis) and is not as good for extrapolation.

7 Conclusion

We took the first steps for addressing the fundamental question of off-policy evaluation under the
presence of non-stationarity. Towards this goal we discussed the need for structural assumptions and
developed a model-free procedure OPEN and presented ways to mitigate its bias and variance. Empir-
ical results suggests that OPEN can now not only enable practitioners to predict future performances
amidst non-stationarity but also identify policies that may be actively causing harm or damage. In the
future, OPEN can also be extended to enable control of non-stationary processes.
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A FAQs: Frequently Asked Questions

A.1 How does the stationarity condition for a time-series differ from that in RL?

Conventionally, stationarity is the time-series literature refers to the condition where the distribution
(or few moments) of a finite sub-sequence of random-variables in a time-series remains the same as
we shift it along the time index axis [Cox and Miller, 2017]. In contrast, the stationarity condition
in the RL setting implies that the environment is fixed [Sutton and Barto, 2018]. This makes the
performance J(π) of any policy π to be a constant value throughout. In this work, we use ‘stationarity’
as used in the RL literature.

A.2 Can the POMDP during each episode (Figure 2) itself be non-stationary?

Any source of non-stationarity can be incorporated in the (unobserved) state to induce another
stationary POMDP (from which we can obtain a single sequence of interaction). The key step towards
tractability is Assumption 1 that enforces additional structure on the performance of any policy across
the sequence of (non-)stationary POMDPs.

A.3 What if it is known ahead of time that the non-stationarity is passive only?

In such cases where the underlying changes are independent of the past actions,
Eβ1

[Ji+1(π)|Ji(π)] = Eβ2
[Ji+1(π)|Ji(π)], for any policies β1 and β2. Therefore, there is no need

for double-counterfactual reasoning to correct for the changes observed in the past. Particularly, in
Theorem 1 the second use of importance sampling can be avoided as Eβi,βi+1

[
ρiĴi+1(π)

∣∣∣Mi(π)
]

=

Eβi,βi+1

[
Ĵi+1(π)

∣∣∣Mi(π)
]

under passive non-stationarity. Rest of the procedure for OPEN can be
modified accordingly.

A.4 How should different non-stationarities be treated in the on-policy setting?

Perhaps interestingly, OPEN makes no effective distinction between active and passive non-
stationarity in the on-policy setting. Notice that in the on-policy setting, importance ratios ρ = 1
everywhere, therefore the use of double counterfactual reasoning has no impact. Intuitively, in the
on-policy setting, there is no need to dis-entagle the active and passive sources of non-stationarity, as
the prediction needs to be made about the same policy that was used during data collection.

A.5 Can you tell us more about when would Assumption 1 be (in)valid?

Yes, we provide a detailed discussion on Assumption 1 in Appendix C.

A.6 What are the limitations and potential negative impacts of the work?

Our work presents the first few steps towards off-policy evaluation in the presence of non-stationarity.
Towards this goal, we used Assumption 1 to enforce a higher-order stationarity condition. We have
provided extended discussion regarding the same in Appendix C and a practitioner should carefully
analyze their problem setup to conclude if the assumption holds (at least approximately).

Further, often off-policy evaluation is used in safety-critical settings, where it is important to provide
confidence intervals [Thomas et al., 2015, 2019, Jiang and Huang, 2020]. Because of our use of
instrument variables, our estimator may have high-variance. This can be explained by observing the
closed form equation in (22) obtained using the IV procedure. Here, Z is the instrument variable
and if it is weakly correlated with X (i.e,. Z>X has a small magnitude) then (Z>X)−1 can be large
thereby increasing variance. However, our proposed method OPEN only provides point-estimates
and thus using it as-is in safety critical settings would be irresponsible.

If the application does exhibit non-stationarity, a practitioner may have to make a tough choice
between prior methods that provide confidence intervals under the stationarity assumption, or the
proposed method that may be applicable to their non-stationary setting but does not provide any
confidence intervals.
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B Extended Related Work

In this section we discuss several different research directions that are relevant to the topic of this
paper. We refer the readers to the work by Padakandla [2020], Khetarpal et al. [2020] for a more
exhaustive survey.

B.1 Off-policy evaluation in stationary domains

In the off-policy RL setup, there is a large body of literature that tackles the off-policy estimation
problem. One line of work leverages dynamic programming [Puterman, 1990, Sutton and Barto,
2018] to develop off-policy estimators [Boyan, 1999, Sutton et al., 2008, 2009, Mahmood et al.,
2014, 2015]. Several recent approaches also build upon a dual perspective for dynamic programming
[Puterman, 1990, Wang et al., 2007, Nachum and Dai, 2020] for performing off-policy evaluation
[Liu et al., 2018, Xie et al., 2019, Jiang and Huang, 2020, Uehara et al., 2020, Dai et al., 2020, Feng
et al., 2021]. These works require fully-observable states. Other direction of work takes Monte-Carlo
perspective to perform trajectory based importance sampling and are applicable to stationary setting
with partial observability [Precup, 2000, Thomas et al., 2015, Jiang and Li, 2015, Thomas and
Brunskill, 2016]. The proposed work builds upon this direction.

Several works have also discussed various techniques for variance reduction [Jiang and Li, 2015,
Thomas and Brunskill, 2016, Munos et al., 2016, Harutyunyan et al., 2016, Liu et al., 2018, Espeholt
et al., 2018, Nachum et al., 2019, Yang et al., 2020, Yuan et al., 2021]. However, these methods are
restricted to stationary domains.

B.2 Non-stationarity in stationary domains

In the face of uncertainty, prior works often opt for exploratory or safe behavior by acting optimisti-
cally or pessimistically, respectively. This is often achieved by using the collected data to dynamically
modify the observed rewards for any state-action pair by either providing bonuses [Agarwal et al.,
2020, Taiga et al., 2021] or penalties [Buckman et al., 2020, Cetin and Celiktutan, 2021]. One could
view this as an instance of active non-stationarity. Similarly, in temporal-difference (TD) methods
the target for the value function keeps changing and such changes are also dependent on the data
collected in the past [Sutton and Barto, 2018]. However, we note that such non-stationarities are
only artifacts of the learning algorithm as the underlying domain remains stationary throughout. In
contrast, the focus of our work is on settings where the underlying domain is non-stationary.

B.3 Single Episode Continuing setting

As discussed in Section 4, non-stationarity can be alternatively modeled using a single long episode
in a stationary POMDP. From this point of view, one may wonder if the average-reward/continuing
setting [Sutton and Barto, 2018] could be useful? While there have been off-policy evaluation
methods designed to tackle the continuing setting [Liu et al., 2018, Nachum et al., 2019, Yang et al.,
2020], they require two important conditions that are no applicable for our setting: (a) They assume
access to the true underlying state such that there is no partial-observability, and (b) They assume that
the transition tuples are sampled from the stationary state-visitation distribution of a policy. In the
non-stationary setting that we consider, we may not have data from any stationary state visitation
distribution, and we may not have access to the true underlying states either.

B.4 Non-stationarity in MDPs/Bandits

Several prior methods have considered tackling non-stationarity for reinforcement learning problems.
For instance, a Hidden-Mode MDP is a setting that assumes that the environment changes are confined
to a few hidden modes, where each mode represents a unique MDP. This provides a tractable way to
model a limited number of MDPs [Choi et al., 2000, Basso and Engel, 2009], or perform updates
using mode-change detection [Da Silva et al., 2006, Padakandla et al., 2019, Alegre et al., 2021].
Similarly there are methods [Xie et al., 2020a] based on hidden-parameter MDPs [Doshi-Velez and
Konidaris, 2016] that consider a more general setup where the hidden variable can be continuous.
Alternatively, many methods [Thomas et al., 2017, Jagerman et al., 2019, Chandak et al., 2020b, Zhou
et al., 2020, Poiani et al., 2021, Liotet et al., 2021] have considered time-dependent MDPs [Rachelson
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et al., 2009]. Aspects related to safety and confidence intervals have also been explored [Ammar
et al., 2015, Chandak et al., 2020a, 2021]. However, the focus of these methods are on settings with
passive non-stationarity, where the past actions do not influence the underlying non-stationarity. Our
works extends this direction of research to provide off-policy evaluation amidst active and hybrid
non-stationarity as well.

Non-stationary multi-armed bandits (NMAB) capture the setting where the horizon length is one, but
the reward distribution changes over time [Moulines, 2008, Besbes et al., 2014, Russac et al., 2019,
Vernade et al., 2020]. Many variants of NMAB, like cascading non-stationary bandits [Wang et al.,
2019a, Li and de Rijke, 2019] and rotting bandits [Levine et al., 2017, Seznec et al., 2018] have also
been considered. In contrast, this work focuses on methods that generalize to the sequential decision
making setup where the horizon length can be more than 1.

B.5 Multi-agent Games

Non-stationarity also occurs in multiplayer games [Singh et al., 2000, Bowling, 2005, Conitzer and
Sandholm, 2007] where the opponent can change their strategy as a response to the agent’s previous
decisions. These types of changes are related to active non-stationarity that we consider in this work.
In such games, opponent modeling has been shown to be useful and regret bounds for multi-player
games [Zhang and Lesser, 2010, Mealing and Shapiro, 2013, Foster et al., 2016, Foerster et al.,
2018]. Further, often these games still assume that the underlying system/environment (excluding
other players) is stationary and focus on searching for (Nash) equilibria. Similarly, non-stationarities
are also induced in the multi-agent systems where an agent tries to influence other agents [Jaques
et al., 2019, Wang et al., 2019b, Xie et al., 2020b, Wang et al., 2021]. However, under general
non-stationarity, the underlying system may also change and thus there may not even exist any fixed
equilibria. Perhaps a more relevant setting would be that of evolutionary/dynamics games, where the
pay-off matrix and specification of the game can change over time [Gemp and Mahadevan, 2017,
Hennes et al., 2019]. Such methods, however, do not leverage any underlying structure in how the
game is changing nor do they account for settings where the changes might be a consequence of past
interactions of the agent. While relevant, these other research areas are distinct from our setting of
interest.

B.6 Dynamical Systems and Time-Series Analysis

The proposed method for modeling the evolution of a policy’s performance over time using stochastic
estimates of past performances may be reminiscent of state-space methods (e.g., Kalman filtering)
for dynamical systems [Hamilton, 1994]. However, in comparison to these methods, we do not need
to model noise variables, which could have been challenging in our case as noise is heteroskedastic
because of past (off-policy) performance estimates being computed using data from different behavior
policies. Further the form of OPEN estimator allows leveraging (accelerated) gradient descent
based optimizers to obtain the solution instead of relying on computationally expensive closed-form
solutions that are typically needed by state-space models. Due to this, in practice our method can also
be used with non-linear functions f (e.g., recurrent neural network based auto-regressive models).

Different applications of time-series analysis have also discussed the use of lags as instruments
[Achen, 2000, Reed, 2015, Bellemare et al., 2017, Wilkins, 2018, Wang and Bellemare, 2019]. Our
use case differs from these prior works in that we look at the full sequential decision making setup for
reinforcement learning, and also consider a novel importance-weighted instrument-variable regression
model.

C Discussion on the Structural Assumption

Assumption 1 states that ∀m ∈M such that the performance J(π) associated with m is j,

∀i, Pr(Ji+1(π) = ji+1|Mi = m;π) = Pr(Ji+1(π) = ji+1|Ji(π) = j;π).

As discussed earlier, consider a ‘meta-transition’ function that characterizes Pr(Ji+1(π)|Ji(π), π′)
similar to how the standard transition function in an MDP characterizes Pr(St+1|St, At). This
assumption is imposing the following two conditions: (a) A higher-order stationarity condition on
the meta-transitions under which non-stationarity can result in changes over time, but the way the
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changes happen is fixed, and (b) Knowing the past performance(s) of a policy π provides sufficient
information for the meta-transition function to model how the performance will change upon executing
any (possibly different) policy π′. We provide some examples in Figure 6 to demonstrate few settings
to discuss the applicability of this assumption.

Figure 6: In this figure we plot different kinds of performance trends and discuss the applicability of
Assumption 1 for each. The red curve corresponds to the forecast obtained using an auto-regressive
model. (Left) In many cases where the performance of a policy is smoothly changing over time (for
e.g., drifts in interests of an user that a recommender system needs to account for), looking at the
past performances can often provide indication of how the performance would evolve in the future.
(Middle) Changes in performances does not necessarily have to be smooth. What Assumption 1
enforces is that the changes have some structure which can be generalized to make predictions about
how the performance would change in the future. Here, the performance jumps between different
values (for e.g., if there is discontinuous change in the underlying system), but till their is some
structure in the changes, it can be leveraged to make predictions about the future performances as
well. (Right) While Assumption 1 can be applicable in many setting, there can be settings where this
assumption does not hold. For example, if a motor of an industrial system is degrading over time but
this degradation has no effect on the observable performance, until the point when the motor breaks
down and the performance drops completely. In such cases, just looking at past performances may
not be sufficient to infer how performance will change in the future.

C.1 Latent Variables

Instead of enforcing structure on the performances, a possible alternative could have been to enforce
structure on how the underlying latent variable (e.g., friction of a motor, interests of a user) are
changing over time. While this might be more intuitive for some, just considering structure on this
latent variable need not be sufficient. Dealing with latent/hidden variables can particularly challenging
in the off-policy setting, as it may often not be possible (unless additional assumptions are enforced)
to infer the latent variable using just the observations from past interactions, even in the stationary
setting [Tennenholtz et al., 2020, Namkoong et al., 2020, Shi et al., 2021, Bennett et al., 2021].

Further, the end goal is to estimate the performance of a policy in the future. Therefore, even if
we could infer the possible latent variables for the future episodes, it would still require additional
regularity conditions on the (unknown) function that maps from the latent variable to the performance
associated with it for any given policy. Without that it would not be possible to generalize what
would the performance be for the inferred latent variables of the future. And as we discuss in Figure
7, these two assumptions on (a) the structure of how the latent variable could change, and (b) the
regularity condition on how the latent variable impacts the performance, can often be reduced to a
single condition directly on the structure of how the performances are changing.

D Proofs for Theoretical Results

D.1 Double Counterfactual Reasoning

Theorem 1. Under Assumptions 1 and 2, ∀m ∈M such that the performance J(π) associated with
m is j, Eπ [Ji+1(π)|Ji(π) = j] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣Mi = m
]
.

Proof. In the following, to make the dependence of trajectories explicit, we will additionally define
ρ(h) and g(h) to be the importance ratios and the return associated with a trajectory h. Using this
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Figure 7: (Left) Considering structured changes in latent variable z (blue arrow) of the POMDP
might often be more intuitive. However, as J(π) estimation is required ultimately, unless performance
of a policy also has some structure (green arrows) given z, generalizing across (potentially unseen) z’s
may not be possible. Structured changes for blue and green arrows consequently results in structured
changes in J(π) (dashed-blue arrows). For example, if the performance J(π) of a policy changes
(Lipschitz) smoothly with z, then (Lipschitz) smooth changes between z values automatically also
imply (Lipschitz) smooth changes between J(π) values. (Right) When executing a policy π, say z
changes as zi = i, and Ji(π) changes periodically as sin(zi). Here, even though both z and J change
smoothly, changes in zi+1 can be modeled using one past term (i.e, zi) as given just the current
performance value Ji(π) it is not possible to predict whether the next performance Ji+1(π) would
increase or decrease in the future. However, such a problem can be easily resolved by looking at
multiple past performances to infer the trend (for e.g., just using past 2 terms here suffices to exactly
predict the future outcomes(red curve)).

notation, it can be observed that,

Eπ [Ji+1(π)|Mi] =
∑
hi+1

Pr(hi+1|Mi;π)g(hi+1)

(a)
=
∑
hi+1

∑
mi+1

∑
hi

Pr(hi+1,mi+1, hi|Mi;π)g(hi+1)

(b)
=
∑
hi

Pr(hi|Mi;π)
∑
mi+1

Pr(mi+1|hi,Mi;π)

∑
hi+1

Pr(hi+1|mi+1, hi,Mi;π)g(hi+1)

(c)
=
∑
hi

Pr(hi|Mi;π)
∑
mi+1

Pr(mi+1|hi,Mi)
∑
hi+1

Pr(hi+1|mi+1;π)g(hi+1)

(d)
=
∑
hi

ρ(hi) Pr(hi|Mi;βk)
∑
mi+1

Pr(mi+1|hi,Mi)∑
hi+1

ρ(hi+1) Pr(hi+1|mi+1;βi+1)g(hi+1)

(e)
=
∑
hi

∑
mi+1

∑
hi+1

Pr(hi|Mi;βi) Pr(mi+1|hi,Mi) Pr(hi+1|mi+1;βi+1)
[
ρ(hi)ρ(hi+1)g(hi+1)

]

= Eβiβi+1
[ρiρi+1Gi+1|Mi]

= Eβiβi+1

[
ρiĴi+1(π)|Mi

]
, (7)

where (a) follows from the law of total probability, (b) follows from the chain rule of probability, (c)
follows using conditional independence, where mi+1 is independent of π given hi and Mi because of
the meta-transition function T , and hi+1 i independent of hi and Mi given mi+1 and π, (d) follows
from the use of importance sampling to switch the sampling distribution under Assumption 2, and (e)
follows from re-arrangement of terms. Finally, ρi and ρi+1 are the random variables corresponding
the importance ratios in episodes i and i+ 1. Random variable Gi+1 corresponds to the return under
β in episode i+ 1.
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Now notice that

Eπ [Ji+1(π)|Mi] =
∑
y∈R

Pr(Ji+1(π) = y|Mi;π)y

(f)
=
∑
y∈R

Pr(Ji+1(π) = y|Ji(π);π)y

= Eπ [Ji+1(π)|Ji(π)] , (8)

where (f) follows from Assumption 1. Finally, combining (7) and (8),

Eπ [Ji+1(π)|Ji(π)] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣∣Mi

]
.

Similarly, under a more generalized Assumption 1, where ∀m ∈M,

∀i > p, Pr(Ji+1(π) = ji+1|Mi = m;π′) = Pr(Ji+1(π) = ji+1|(Ji−k(π) = ji−k)pk=0;π′).

then similar steps as earlier can be used to conclude that

Eπ [Ji+1(π)|(Ji−k(π))pk=0] = Eβiβi+1

[
ρiĴi+1(π)|Mi

]
. (9)

Note that no additional importance correction is needed in (9) compared to (8). The term ρi only
shows up to correct for the transition between Mi and Mi+1 due to the meta-transition function
T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h). This independence on the choice of p also holds if
T is non-Markovian in the previous Mi values. Although, additional importance correction would be
required if T is dependent on multiple past Hi terms.

D.2 Asymptotic bias of θ̂naive

Recall that θ̂naive is given by,

θ̂naive ∈ argmin
θ∈Θ

n−1∑
i=1

(
f
(
Ĵi(π); θ

)
− ρiĴi+1(π)

)2

.

Because Ĵi(π) is an unbiased estimate of Jπ, let Ĵi(π) = Ji(π) + ηi, where ηi is a mean zero
noise. Let N := [η1, η2, ..., ηn−1]> and J := [J1(π), J2(π), ..., Jn−1(π)]>. When f is a linear
function of its inputs, expected value Eπ[Ji+1(π)|Ji(π)] = Jiθπ . Also, as ρiĴi+1(π) is an unbiased
estimator for Ji(π)θπ given Ji(π), let ρiĴi+1(π) = Ji(π)θπ + ζi, where ζi is mean zero noise. Let
N2 := [ζ1, ζ2, ..., ζn−1]> then θnaive can be expressed as,

θ̂naive =
(

(J + N)
>

(J + N)
)−1

(J + N)
>

(Jθπ + N2)

=
(
J>J + 2J>N + N>N

)−1(J>Jθπ + N>Jθπ + J>N2 + N>N2

)
=

(
1

n

(
J>J + 2J>N + N>N

))−1(
1

n

(
J>Jθπ + N>Jθπ + J>N2 + N>N2

))
. (10)

In the limit, using continuous mapping theorem when the inverse in (10) exists,

lim
n→∞

θ̂naive =

(
lim
n→∞

1

n

(
J>J + 2J>N + N>N

))−1(
lim
n→∞

1

n

(
J>Jθπ + N>Jθπ + J>N2 + N>N2

))
.

(11)

Observe that both N and N2 are mean zero and uncorrelated with each other and also with J.
Therefore, the terms corresponding to J>N, J>N2, and N>N2 in (11) will be zero almost surely due
to Rajchaman’s strong law of large numbers for uncorrelated random variables [Rajchman, 1932,
Chandra, 1991]. However, the term corresponding to N>N will not be zero in the limit, and instead
roughly result in (average of the) variances of ηi. Consequently, this results in,

θ̂naive
a.s.−→

(
J>J + N>N

)−1 J>Jθπ.
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D.3 Importance-Weighted IV-Regression

Theorem 2. Under Assumptions 1 and 2, ∀i, Cov
(
Ĵi−1(π), Ĵi(π)− Ji(π)

)
= 0.

Proof.

∀i, Cov
(
Ĵi(π), Ĵi+1(π)− Ji+1(π)

)
= Eβ

[
Ĵi(π)

(
Ĵi+1(π)− Ji+1(π)

)]
︸ ︷︷ ︸

(I)

− Eβ
[
Ĵi(π)

]
Eβ
[
Ĵi+1(π)− Ji+1(π)

]
︸ ︷︷ ︸

(II)

. (12)

Focusing on term (II),

Eβ
[
Ĵi(π)

]
Eβ
[
Ĵi+1(π)− Ji+1(π)

]
= Eβ

[
Ĵi(π)

] (
Eβ
[
Ĵi+1(π)

]
− Ji+1(π)

)
(a)
= Eβ

[
Ĵi(π)

]
(Ji+1(π)− Ji+1(π))

= 0,

where (a) follows from the fact that under Assumption 2, Ĵi+1(π) is an unbiased estimator for
Ji+1(π) [Thomas, 2015]. Focusing on term (I) and using the law of total expectation,

Eβ
[
Ĵi(π)

(
Ĵi+1(π)− Ji+1(π)

)]
= Eβ

[
Ĵi(π)Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Ĵi(π)
]

︸ ︷︷ ︸
(III)

]
.

Expanding term (III) further using the law of total expectation,

Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Ĵi(π)
]

(b)
= Eβ

[
Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1, Ĵi(π)
]∣∣∣Ĵi(π)

]
(c)
= Eβ

[
Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1

]∣∣∣Ĵi(π)
]

(d)
= 0,

where in (b) the outer expectation is over the next environment Mi+1 given that the current perfor-
mance estimate is Ĵi(π) and that βi was used for interaction in episode i. The inner expectation is
over Ĵi+1(π) and the trajectory used for estimating Ĵi+1(π) is collected using β in the environment
Mi+1. Step (c) follows from the fact that conditioned on the environment Mi+1, interactions in Mi+1

are independent of quantities observed in the episodes before i+ 1. Finally, step (d) follows from
observing that

Eβ
[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1

]
= Eβ

[
Ĵi+1(π)

∣∣∣Mi+1

]
− Ji+1(π)

(e)
= Ji+1(π)− Ji+1(π)

= 0,

where (e) follows from the fact that under Assumption 2, Ĵi+1(π) is an unbiased estimator of the
performance of π for the given environment Mi+1. Therefore both (a) and (b) in (12) are zero, and
we conclude the result.

Theorem 3. Under Assumptions 1, 2, and 3, if f and g are linear functions of their inputs, then θ̂n is
a strongly consistent estimator of θπ , i.e., θ̂n

a.s.−→ θπ . (See Appendix D.3 for the proof.)

Proof. For the linear setting, θ̂n can be expressed as,

φ̂n ∈ argmin
φ∈Φ

n−1∑
i=2

(
Ĵi−1(π)φ− Ĵi(π)

)2

. (13)

θ̂n ∈ argmin
θ∈Θ

n−1∑
i=2

(
J̄i(π)θ − ρiĴi+1(π)

)2

, where J̄i := Ĵi−1φ̂n. (14)
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Before moving further, we introduce some additional notations. Particularly, we will use matrix based
notations such that it provides more insights into how the steps would work out for other choices of
instrument variables as well.

X1 :=
[
Ĵ1(π), ..., Ĵn−2(π)

]>
, Λ1 := diag([ρ1, ..., ρn−2]),

X2 :=
[
Ĵ2(π), ..., Ĵn−1(π)

]>
, Λ2 := diag ([ρ2, ..., ρn−1]) ,

X3 :=
[
Ĵ3(π), ..., Ĵn(π)

]>
X̄2 :=

[
J̄2(π), ..., J̄n−1(π)

]>
,

where the diag corresponds to a diagonal matrix with off-diagonals set to zero.

In the following, we split the proof in two parts: (a) we will first show that

θ̂n =
(
X>1 X2

)−1 (
X>1 Λ2X3

)
,

and then (b) using this simplified form for θ̂n we will show that θ̂n
a.s.−→ θπ .

Part (a) Solving (13) in matrix form,

φ̂n =
(
X>1 X1

)−1
X>1 X2. (15)

Similarly, solving (14) in matrix form,

θ̂n =
(
X̄>2 X̄2

)−1
X̄>2 Λ2X3. (16)

Now substituting the value of X̄2 in (16),

θ̂n =


X1φ̂n︸ ︷︷ ︸

X̄2


>X1φ̂n︸ ︷︷ ︸

X̄2



−1X1φ̂n︸ ︷︷ ︸

X̄2


>

Λ2X3. (17)

Using (15) to substitute the value of φ̂n in (17),

θ̂n =


X1

(
X>1 X1

)−1
X>1 X2︸ ︷︷ ︸

φ̂n


>X1

(
X>1 X1

)−1
X>1 X2︸ ︷︷ ︸

φ̂n



−1

X1

(
X>1 X1

)−1
X>1 X2︸ ︷︷ ︸

φ̂n


>

Λ2X3. (18)

Using matrix operations to expand the transposes in (18),

θ̂n =
((

X>2 X1

(
X>1 X1

)
−1X>1

)(
X1

(
X>1 X1

)
−1X>1 X2

))−1

(
X>2 X1

(
X>1 X1

)−1
X>1

)
Λ2X3. (19)

Similarly, using matrix operations to expand inverses in (19) (colored underlines are used to match
the terms before expansion in (19) and after expansion in (20)),

θ̂n =
(
X>1 X2

)
−1
(
X>1 X1

)(
X>1 X1

)
−1
(
X>1 X1

)(
X>2 X1

)
−1(

X>2 X1

) (
X>1 X1

)−1 (
X>1 Λ2X3

)
, (20)

Notice that several terms in (20) cancel each other out, therefore,

θ̂n =
(
X>1 X2

)−1 (
X>1 Λ2X3

)
. (21)

As a side remark, we note that if we replace X1 in the above steps with an appropriate instrument
variable Z1, then similar steps will follow and will result in

θ̂n =
(
Z>1 X2

)−1 (
Z>1 Λ2X3

)
. (22)
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Part (b) Now when f(Ji(π); θπ) := Eπ [Ji+1(π)|Ji(π)] is a linear function,

Ji+1(π) = Ji(π)θπ + Ui+1(Hi),

where Ui+1 is a bounded mean zero noise (which depends on the interaction Hi by π). Using
Theorem 1, let

Yi+1 := Eπ [Ji+1(π)|Ji(π)]

and its unbiased estimate be

Ŷi+1 := ρiĴi+1(π) = ρiρi+1Gi+1. (23)

For the regression, since Ĵi(π) is an unbiased estimate of the input Ji(π) and Ŷi+1 is an unbiased
estimate of the target Eπ [Ji+1(π)|Ji(π)], these can be equivalently expressed as,

Ĵi(π) = Ji(π) + Vi(Hi),

Ŷi+1 = Ji+1(π) +Wi+1(Hi, Hi+1), (24)

where Vi(Hi) is some bounded mean-zero noise (dependent on the unbiased estimate made using
Hi) and Wi+1(Hi, Hi+1) is also a bounded mean-zero noise (dependent on the unbiased estimate
made using Hi and Hi+1). Before moving further, we define some additional notation,

Y3 := [Y3, ..., Yn]> U3 := [U3(H2), ..., Un(Hn−1)]>,

Ŷ3 := [Ŷ3, ..., Ŷn]> V2 := [V2(H2), ..., Vn−1(Hn−1)]>.

J2 := [J2(π), ..., Jn−1(π)]
>

W3 := [W3(H2, H3), ...,Wn(Hn−1, Hn)]>.

Using (23) note that Ŷ3 = Λ2X3, therefore (21) can be expressed as,

θ̂n =
(
X>1 X2

)−1
(
X>1 Ŷ3

)
. (25)

Unrolling value of Ŷ3 in (25) using relations from (23) and (24),

θ̂n =
(
X>1 X2

)−1 (
X>1 (Y3 + W3)

)
=
(
X>1 X2

)−1 (
X>1 (J2θπ + U3 + W3)

)
=
(
X>1 X2

)−1 (
X>1 ((X2 −V2) θπ + U3 + W3)

)
. (26)

Expanding (26),

θ̂n = θπ −
(
X>1 X2

)−1
X>1 V2θπ +

(
X>1 X2

)−1 (
X>1 (U3 + W3)

)
. (27)

Evaluating the value of (27) in the limit,

lim
n→∞

θ̂n = θπ − lim
n→∞

(X>1 X2

)−1
X>1 V2θπ︸ ︷︷ ︸

(a)

+
(
X>1 X2

)−1 (
X>1 (U3 + W3)

)︸ ︷︷ ︸
(b)

 . (28)

It can be now seen from (28) that if in the limit the terms inside the paranthesis are zero, then we
would obtain our desired result. Focusing on the term (a) and using the continuous mapping theorem,

lim
n→∞

(
X>1 X2

)−1
X>1 V2θπ = lim

n→∞

(
1

n
X>1 X2

)−1(
1

n
X>1 V2θπ

)

=

(
lim
n→∞

1

n
X>1 X2

)−1

 lim
n→∞

1

n
X>1 V2︸ ︷︷ ︸

(c)

 θπ, (29)

where Assumption 3 ensures that X1 and X2 are correlated and thus their dot product is not zero.
Notice that term (c) (29) can be expressed as 1

n

∑n−1
i=2 Xi−1Vi. Further, recall from Theorem 2 that

Vi is a mean zero random variable uncorrelated with Xi−1 for all i. Further, Vi and Xi−1 are also
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bounded for all i as both rewards and importance ratios are bounded (Assumption 2), and T is finite.
Now, for αi := Xi−1Vi observe that E[αi] = E[Xi−1E[Vi|Xi−1]] = E[Xi−10] = 0 and thus αi is a
bounded and mean zero random variable ∀i. Therefore, as (c) is an average of α variables, it follows
from the Rajchaman’s strong law of large numbers for uncorrelated random variables [Rajchman,
1932, Chandra, 1991] that term under (c) is zero almost surely. Thus,(

X>1 X2

)−1
X>1 V2θπ

a.s.−→ 0.

Similarly, for term (b) in (28) observe that both U3 and W3 are zero mean random variables
uncorrelated with X1. Therefore, term (b) in (28) is also zero in the limit almost surely. It can now
be concluded from (28) that

θ̂n
a.s.−→ θπ.

Theorem 4. Under Assumptions 1, 2, and 3, if f and g are linear functions of their inputs, then θ̃n is
a strongly consistent estimator of θπ , i.e., θ̃n

a.s.−→ θπ . (See Appendix D.3 for the proof.)

Proof. For the linear setting, θ̃n can be expressed as,

φ̂n ∈ argmin
φ∈Φ

n−1∑
i=2

ρi

(
Ĵi−1(π)φ−Gi(π)

)2

. (30)

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2

ρiρi+1

(
J̄i(π)θ −Gi+1(π)

)2
, where J̄i := Ĵi−1φ̂n. (31)

Notice that as dividing the objective by a positive constant does not change the optima, we drop the
denominator terms in

ρ̄i :=
ρiρi+1∑n−1
j=2 ρjρj+1

for the purpose of the analysis. Before moving further, we introduce some additional notations
besides the ones introduced in the proof of Theorem 3,

G3 := [G3, ..., Gn]
>

Λ̄2 := diag([ρ2ρ3, ρ3ρ4..., ρn−1ρn]),

Solving (30) in matrix form,

φ̂n =
(
X>1 Λ2X1

)−1
X>1 Λ2G2.

=
(
X>1 Λ2X1

)−1
X>1 X2.

Similarly, solving (31) in matrix form,

θ̃n =
(
X̄>2 Λ̄2X̄2

)−1
X̄>2 Λ̄2G3.

(a)
=
(
X̄>2 Λ̄2X̄2

)−1
X̄>2 Λ2X3, (32)

where (a) follows from the fact that ρiρi+1Gi+1 = ρiĴi+1(π). Now substituting the value of X̄2 in
(32) similar to (17) and (18) in the proof of Theorem 3,

θ̃n =
((

X>2 X1

(
X>1 Λ2X1

)
−1X>1

)
Λ̄2

(
X1

(
X>1 Λ2X1

)
−1X>1 X2

))
−1(

X>2 X1

(
X>1 X1

)−1
X>1

)
Λ2X3. (33)

Similarly, using matrix operations to expand inverses in (33) (colored underlines are used to match
the terms before expansion in (33) and after expansion in (34)) and multiplying and dividing by n,

θ̃n =
(
X>1 X2

)
−1

(
1

n
X>1 Λ2X1

)(
1

n
X>1 Λ̄2X1

)
−1

(
1

n
X>1 Λ2X1

)
(
X>2 X1

)
−1

(
X>2 X1

)( 1

n
X>1 Λ2X1

)−1 (
X>1 Λ2X3

)
. (34)
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Now focusing on the term underlined in green, in the limit,

lim
n→∞

1

n
X>1 Λ̄2X1 = lim

n→∞

1

n

n−1∑
i=2

ρiρi+1Ĵi−1(π)Ĵi−1(π)>

(a)
= lim

n→∞

1

n

n−1∑
i=2

Eβi,βi+1 [ρiρi+1]Ĵi−1(π)Ĵi−1(π)> +
1

n

n−1∑
i=2

εiĴi−1(π)Ĵi−1(π)>

(b)
= lim

n→∞

1

n

n−1∑
i=2

Ĵi−1(π)Ĵi−1(π)>

= lim
n→∞

1

n
X>1 X1, (35)

where in (a) we defined random variable ρiρi+1 as its expected value Eβi,βi+1
[ρiρi+1] plus a mean

zero noise εi. Step (b) follows from first observing that ρi and ρi+1 are uncorrelated. Therefore
Eβi,βi+1

[ρiρi+1] = Eβi
[ρi]Eβi+1

[ρi+1] = 1 as the expected value of importance ratios is 1 [Thomas,

2015]. Similarly, εi is uncorrelated with Ĵi−1(π), i.e., the expected value Eβi,βi+1

[
εi|Ĵi−1(π)

]
=

Eβi,βi+1 [εi] = 0 for any given Ji−1(π). (Intuitively, this step can be seen analogous to the derivation
of PDIS, where the expected value of future IS ratios is always one, irrespective of the past events
that it has been conditioned on). Now notice that the random variable ζi := εiĴi−1(π)Ĵi−1(π)>

is bounded and has mean zero for all i. Therefore, while ζi and ζj may be dependent, they are
uncorrelated for all i 6= j. Using strong law of large number for uncorrelated random variables
[Rajchman, 1932, Chandra, 1991] the second term in (a) is zero almost surely.

Similarly, it can be observed that 1
nX>1 Λ2X1 converges to 1

nX>1 X1. Therefore using (35) in (34),
and using the continuous mapping theorem,

θ̃n
a.s.−→

(
X>1 X2

)
−1

(
1

n
X>1 X1

)(
1

n
X>1 X1

)
−1

(
1

n
X>1 X1

)(
X>2 X1

)
−1

(
X>2 X1

)( 1

n
X>1 X1

)−1 (
X>1 Λ2X3

)
. (36)

Notice that Assumption 3 ensures that X1 and X2 are correlated and thus their dot product is not
zero. Further, several terms in (36) cancel each other out, therefore,

θ̃n
a.s.−→

(
X>1 X2

)−1 (
X>1 Λ2X3

)
.

Now proof can be completed similarly to the part (b) of the proof of Theorem 3.

E Empirical Details

E.1 Algorithm

In Section 5 we established the key insight for how to forecast the next performance based on a single
previous performance, when the true performance trend of a policy can be modeled auto-regressively
using a single past term. However, as noted in Remark 3 and Figure 7 using more terms can provide
more flexibility in the the type of trends that can be modeled. Therefore, we leverage statistics based
on multiple past terms to form the instrument variable Zi.

One immediate choice for Zi is Ĵi(π). However, we found that the high variance of IS estimate makes
Ĵi(π) a weak instrument variable [Pearl et al., 2000], that is not strongly correlated with Ji+1(π).
Better choices of Zi may be the ones that are strongly correlated with Ji+1(π) but uncorrelated
with the noise in the Ĵi+1(π) estimate. We found that an alternate choice of Zi composed of the
unweighted return Gi and a WIS estimate for Ji(π) (where the normalization is done only using the
importance ratios from episodes before i) to be more useful. Specifically, we let Zi := [Gi, J̃i(π)],
where

J̃i(π) :=
ρiGi∑i
k=1 ρk

.
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It can be observed similar to Theorem 2 that this Zi is uncorrelated with the noise in Ĵi+1(π) as well.
Further, the weighted version J̃i(π) suffers less from variance and we found it to be more strongly
correlated with Ji+1(π). Further, often the performance of the behavior policy is positively/negatively
correlated with the performance of the evaluation policy and thus Gi tends to be correlated with
Ji+1(π) as well. One could also explore other potential IVs; we leave this for future work.

Now using past p values of Zi to form the complete instrument variable, where p is a hyper-parameter,
we use the following importance weighted instrument-variable regression,

ϕ̃n ∈ argmin
ϕ∈Ω

n∑
i=p+1

ρ̄i

(
g
(

(Zj(π))
i−1
j=i−p ;ϕ

)
−Gi(π)

)2

,

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2p

ρ†i

(
f
((
J̄j(π)

)i
j=i−p+1

; θ
)
−Gi+1(π)

)2

,

where,

J̄i(π) =g
(

(Zj(π))
i−1
j=i−p ; ϕ̃n

)
, ∀p < i ≤ n,

ρ̄i :=
ρi

(
∑n
j=2 ρj)

ρ†i :=
ρiρi+1

(
∑n−1
j=2 ρjρj+1)

.

Once θ̃n is obtained, we use it to auto-regressively forecast the future performances. Particularly, we
use (J̄k)n+L

k=n+1 as the predicted performances for the next L episodes, where

∀i > n, J̄i := f
((
J̄i−k(π)

)p
k=1

; θ̃n

)
.

While our theoretical results were established for the setting where there is only a single regressor (p =
1), a more generalized theoretical result for p > 1 may be possible using the concepts of endogenous
and exogenous regressors. Particularly, let [..., Xi, Xi+1, Xi+2, Xi+3, ...], be observations from an
AR(2) time-series sequence where Xi+3 depends on Xi+1 and Xi+2. Here, using Xi+1 as the only
instrument variable for Xi+2 is not possible as Xi+3 is correlated with Xi+1. However, Z = Xi

or even Z = [Xi, Xi+1] may form a valid instrument for Xi+2 as neither the noise in Xi+3 nor
the noise in Xi+2 is correlated with at least one component of Z, i.e., Xi. For precise instrument
relevance conditions and additional discussion, we refer the reader to the works by Abbott [2007],
Cameron [2019], Parker [2020]. We leave this theoretical extension for the future work.

E.2 Implementation and Hyper-parameters

For the Pro-WLS baseline, we use the weighted least-squares procedure using the Fourier basis
features [Chandak et al., 2020b]. The hyper-parameter for this baseline is the number of Fourier
terms d that should be used to estimate the performance trend. We found that setting d to be too
high results in extremely high-variance and setting it to a lower value fails to capture the trend in
performance. Therefore, based on ablation studies in Figure 10 we set d = 5 for all the experiments.

For OPEN, the hyper-parameter corresponds to the number of terms to condition on during auto-
regression. Based on ablation studies in Figure 10 we set p = 300 (15% of the number of episodes in
the data) for all the experiments.

For each environment, we collect data consisting of 2000 episodes of interaction using the behavior
policy, and predict the expected future returns if executing the evaluation policy for the next 200
episodes. The behavior policy and the evaluation policy for each domain are described in Section E.3.

Since the future outcomes are stochastic, to evaluate the true expected future performance in (3),
we create digital-clones of the environment after data has been collected using the behavior policy.
Using these clones, we compute the average of 30 possible futures when executing the evaluation
policy. This estimate of the expected future returns are then used as the ground truth for comparison
with the predictions made by the algorithms.
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For Figure 5, |bias| was computed using the absolute value of the difference between (a) the predicted
future performance averaged across 30 trials and (b) the ground truth future performance. That is, for
an estimator Ĵ of J , the bias is |J − E[Ĵ ]|. Because of this, 30 trials only gives us a point estimate
for bias. (Notice that using the absolute value of the difference between (a) the predicted future
performance for each trial and (b) the true future performance’, averaged across 30 trials, will provide
an estimate of E[|J − Ĵ |], which would not capture the bias but will be more like the variance (using
L1/absolute distance instead of L2)).

E.3 Environments

We provide empirical results on four non-stationary environments: a toy robot environment, non-
stationary mountain car, diabetes treatment, and MEDEVAC domain for routing air ambulances.
Details for each of these environments are provided in this section. For all of the above environments,
we regulate the ‘speed’ of non-stationarity to characterize an algorithms’ ability to adapt. Higher
speed corresponds to a faster rate of non-stationarity; A speed of zero indicates that the environment
is stationary.

RoboToy: This domain corresponds to the toy robot scenario depicted in Figure 1. Here, a robot
can accomplish a task using either by ‘running’ or ‘walking’. Robot finishes a task faster when
‘running’ than ‘walking’ and thus the reward received at the end of ’running’ is higher. However,
‘running’ causes more wear and tear on the robot, thereby degrading the performance of both ‘running’
or ‘walking’ in the future. Since the past interactions influence the non-stationarity, this is an instance
of active non-stationarity.

To perform more ablations on our algorithms, we also simulated a RoboToy-Passive domain, where
there is no active non-stationarity as above. Instead, the reward obtained at the end of executing the
options ‘walking’ or ‘running’ fluctuate across episodes. Therefore, the changes to the underlying
system are independent of the actions taken by the agent in the past.

For both the active and passive version of this domain, we collect data using a behavior policy
that chooses ‘walking’ more frequently, and the evaluation policy is designed such that it chooses
‘running’ more frequently.

Non-stationary Mountain Car: In real-world mechanical systems, motors undergo wear and tear
over time based on how vigorously they have been used in the past. To simulate similar performance
degradation, we adapt the classic (stationary) mountain car domain [Moore, 1990]. We modify the
domain such that at every episode the effective acceleration force is decayed proportional to the
average velocity of the car in the previous episode. This results in active non-stationarity as the
change in the system is based on the actions taken by the agent in the past. Similar to the works by
[Thomas, 2015, Jiang and Li, 2015], we make use of macro-actions to repeat an action 10 times,
which helps in reducing the effective horizon length of each episode. The maximum number of step
per episode using these macros is 30.

For our experiments, using an actor-critic algorithm [Sutton and Barto, 2018] we find a near-optimal
policy π on the stationary version of the mountain car domain, which we use as the evaluation policy.
Let πrand be a random policy with uniform distribution over the actions. Then we define the behavior
policy β(o, a) := 0.5π(o, a) + 0.5πrand(o, a) for all states and actions.

Type-1 Diabetes Management: Automated healthcare systems that aim to personalise for indi-
vidual patients should account for the physiological changes of the patient over time. To simulate
such a scenario we use an open-source implementation [Xie, 2019] of the U.S. Food and Drug Ad-
ministration (FDA) approved Type-1 Diabetes Mellitus simulator (T1DMS) [Man et al., 2014] for the
treatment of Type-1 diabetes, where we induced non-stationarity by oscillating the body parameters
(e.g., rate of glucose absorption, insulin sensitivity, etc.) between two known configurations available
in the simulator. This induces passive non-stationarity, that is, changes are not dependent on past
actions.

Each step of an episode corresponds to a minute (1440 timesteps–one for each minute in a day) in an
in-silico patient’s body and state transitions are governed by a continuous time non-linear ordinary
differential equation (ODE) [Man et al., 2014]. This makes the problem particularly challenging
as it is unclear how the performance trends of policies vary in this domain when the physiological
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parameters of the patient are changed. Notice that as the parameters that are being oscillated are
inputs to a non-linear ODE system, the exact trend of performance for any policy is unknown. This
more closely reflects a real-world setting where Assumption 1 might not hold, as every policy’s
performance trend in real-world problems cannot be expected to follow any specific trend exactly–one
can only hope to obtain a coarse approximation of the trend.

For our experiments, using an actor-critic algorithm [Sutton and Barto, 2018] we find a near-optimal
policy π on the stationary version of this domain, which we use as the evaluation policy. The
policy learns the CR and CF parameters of a basal-bolus controller. Let πrand be a random policy
with uniform distribution over actions. Then we define the behavior policy β(o, a) := 0.5π(o, a) +
0.5πrand(o, a) for all states and actions.

MEDEVAC: This domain stands for medical evacuation using air ambulances. This domain was
developed by Robbins et al. [2020] for optimally routing air ambulances to provide medical assistance
in regions of conflict. This domain divides the region of conflict into 34 mutually exclusive zones,
and has 4 air ambulances to serve all zones when an event occurs. Based on real-data, this domain
simulates the arrival of different events, from different zones, where each event can have 3 different
priority levels. Serving higher priority events yields higher rewards. If an ambulance is assigned to
an event, it will finish the assignment in a time dependent on the distance between the base of the
ambulance and the zone of the corresponding event. While engaged in an assignment, that ambulance
is no longer available to serve other events. A good controller decides whether to deploy, and which
MEDEVAC to deploy, to serve any event (at the risk of not being able to serve a new high-priority
event if all ambulances become occupied).

The original implementation of the domain assumes that the arrival rates of the events and the time
taken by an ambulance to complete an event follow a Poisson process with a fixed rate. However, in
reality, the arrival rates of different events can change based on external incidents during conflict.
Similarly, the completion rate can also change based on how frequently an ambulance is deployed.
To simulate such non-stationarity, we oscillate the arrival rate of the incoming high-priority events,
which induces passive non-stationarity. Further, to induce wear and tear, we slowly decay the rate
at which an ambulance can finish an assignment. This decay is proportional to how frequently the
ambulance was used in the past. This induces active non-stationarity. The presence of both active and
passive changes makes this domain subject to hybrid non-stationarity.

Similar to other domains, we used an actor-critic algorithm [Sutton and Barto, 2018] we find a
near-optimal policy π on the stationary version of this domain, which we use as the evaluation policy.
Let πrand be a random policy with uniform distribution over the actions. Then we define the behavior
policy β(o, a) := 0.5π(o, a) + 0.5πrand(o, a) for all states and actions.

E.4 Additional Results

While the primary focus of this chapter was to develop methods to handle active/hybrid non-
stationarity, we observed that the proposed method OPEN also provides benefits over the earlier
algorithm Pro-WLS even when it is known that there is only passive non-stationarity in the environ-
ment.

E.4.1 Single Run

Similar to Figure 4, in Figure 8 we present a step by step breakdown of the intermediate stages of
a single run of OPEN on the RoboToy-Passive domain. Here the trend in how the performance of
the evaluation policy was changing in the past remains the same in the future. When only passive
non-stationarity is present, the double counter-factual correction performed by OPEN is superfluous.
However, it can be observed that OPEN can still correctly identify the trend and provide useful
predictions of π’s future performance.

E.4.2 Summary Plots

In Figure 9 we provide bias and MSE analysis of different algorithms on the domains that exhibit
passive non-stationarity. Except for the stationary setting, where WIS has the best performance
overall, we observe that for all other settings in the plot, OPEN performs better than both Pro-WLS
and WIS consistently.
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The blue curve corresponds to the performances Ji(π) for
the past episodes. As there is no active non-stationarity, the
choice of actions executed does not impact the underlying
non-stationarity. Therefore, Ji(π) follows the same trend
in future as it did in the past. The blue and gray curves are
unknown to the algorithm.

OPEN first uses historical data to obtain counterfactual
estimates of Ji(π) for the past episodes. One can see the
high-variance in these estimates (notice the change in the
y-scale) due to the use of importance sampling.

Before naively auto-regressing, OPEN first aims to denoise
the past performance estimates using the first stage of in-
strument variable regression. Since p = 300, the first 300
terms were not denoised. It can be observed that OPEN
successfully denoises the importance sampling estimates.

Using the denoised estimates of past performances, with
the second use of counterfactual reasoning, OPEN per-
forms the second stage of regression to forecast the future
performance when π will be deployed. In the passive set-
ting, use of double-counterfactual is superfluous but OPEN
is still able to correctly predict the future performance.

Figure 8: An illustrative step by step breakdown of the stages in the proposed algorithm OPEN for
the RoboToy-Passive domain.
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Figure 9: Comparison of different algorithms for predicting the future performance of evaluation pol-
icy π on domains that exhibit passive non-stationarity. On the x-axis is the speed, which corresponds
to the rate of non-stationarity; higher speed indicates a faster rate of change and a speed of zero
indicates a stationary domain. (TOP) On the y-axis is the absolute bias in the performance estimate.
(Bottom) On the y-axis is the mean squared error (MSE) in the performance estimate. Lower is
better for all of these plots. For each domain, for each speed, for each algorithm, 30 trials were
executed. Discussion of these plots can be found in Section E.4.

One thing that particularly stands out in these plots is the poor performance of Pro-WLS, despite being
designed for the passive setting. We observed that because of the choice of parametric regression
using the Fourier basis, Pro-WLS tends to suffer from high bias when the number of Fourier terms
is not sufficient to model the underlying trend. Also, if the number of Fourier terms is increased
naively, then they overfit the data and extrapolate poorly, thereby resulting in high-variance. In
contrast, our method is based on an auto-regressive based time-series forecast that is more robust to
the model choice (we kept the number of lag terms for auto-regression as p = 300 for OPEN for all
our experiments).

To obtain all the results for Figure 5 and Figure 9, in total 30 different seeds were used for each
speed of each domain for each algorithm to get the standard error. The authors had shared access to a
computing cluster, consisting of 50 compute nodes with 28 cores each, which was used to run all the
experiments.

E.5 Ablation Study

In this section we study the sensitivity to hyper-parameters for the proposed method OPEN and the
baseline method Pro-WLS [Chandak et al., 2020b]. The hyper-parameter for OPEN corresponds
to the number of past terms to condition on for auto-regression, as discussed in Remark 3. The
hyper-parameter for Pro-WLS corresponds to the order of Fourier bases required for parametric
regression. In Figure 10 we present the results for how the performance of the methods vary for
different choices of hyper-parameters.
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Figure 10: (Top) Absolute bias in prediction of Pro-WLS for different choices of its hyper-parameter.
(Bottom) Absolute bias in prediction of OPEN for different choices of its hyper-parameter. For all
the plots, lower value is better. Overall, we observe that OPEN being an auto-regressive method
can extrapolate/forecast better and is thus more robust to hyper-parameters than Pro-WLS that uses
Fourier bases for regression and is not as good for extrapolation.
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