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Abstract

When faced with sequential decision-making problems, it is often useful to be able to predict what would happen if
decisions were made using a new policy. Those predictions must often be based on data collected under some previ-
ously used decision-making rule. Many previous methods enable such off-policy (or counterfactual) estimation of the
expected value of a performance measure called the return. Drawing inspiration from recent observations on animal
learning that highlight the ability of dopaminergic neurons to encode the entire distribution (not just the expectation) of
outcomes, we take the first steps towards a universal off-policy estimator (UnO)—one that provides off-policy estimates and
high-confidence bounds for the entire distribution of returns and any of its parameters. We use UnO for estimating and
simultaneously bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and the entire cumulative
distribution of returns. Finally, we also discuss UnO’s applicability in various settings, including fully observable, par-
tially observable (i.e., with unobserved confounders), Markovian, non-Markovian, stationary, smoothly non-stationary,
and discrete distribution shifts.
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1 Introduction

Canonically, the reward prediction error theory of dopamine was based on reward predictions that were represented as
a single scalar quantity and supported learning about the expectation, or mean, of stochastic outcomes. Based on sur-
prising new observations of the dopaminergic neurons, Dabney et al. [3] instead hypothesized that the brain represents
possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple
future outcomes simultaneously. This study was inspired by recent developments in distributional reinforcement learning
[1] that demonstrated benefits of explicitly accounting for the return distribution in the on-policy setting for practical
applications. However, bridging these connections to the off-policy setting had remained an open question so far.

When online experimentation is costly or dangerous, it is essential to conduct off-policy evaluation before deploying a
new policy; that is, one must leverage existing data collected using some policy β (called a behavior policy) to evaluate
a performance metric of another policy π (called the evaluation policy). For problems with high stakes, such as in terms
of health or financial assets, it is also crucial to provide high-confidence bounds on the desired performance metric to
ensure reliability and safety. Perhaps the most widely studied performance metric in the off-policy setting is the expected
return. However, this metric can be limiting for many problems of interest.

As controlled experiments could be expensive in terms of time, effort, and money, one may want to analyze the shift in
dopamine based reward distribution for different experimental variations (for example, under a different probability of
liquid rewards for a given cue to the mice [3]), without conducting any new experiments. Similarly, leveraging historical
data to design safety-critical treatments (e.g., Alzheimer’s and other brain disorders) may require ensuring improvement
not only in terms of the expected outcome but also minimizing the chances of risk-prone outcomes, and so performance
metrics such as value at risk (VaR) or conditional value at risk (CVaR) may be more appropriate. Similarly, in order to
improve user experiences, applications involving direct human-machine interaction, such as robotics and autonomous
driving, focus on minimizing uncertainty in their outcomes and may use metrics like variance and entropy. As deciding
the right metric often requires careful analysis of ethical and moral concerns, it may be beneficial to have all of these
different metrics simultaneously to inform better decision-making. However, even individually estimating and bounding
any performance metric, other than mean and variance, in the off-policy setting has remained an open problem.

This raises the main question of interest: How do we develop a universal off-policy method—one that can estimate and also
provide finite-sample confidence bounds that hold simultaneously with high probability for any desired performance metrics?

Prior Work: Off-policy methods can be broadly categorized as model-based or model-free. Model-based methods typi-
cally require strong assumptions on the parametric model when statistical guarantees are needed. Further, using model-
based approaches to estimate parameters other than the mean can also require estimating the distribution of rewards for
every state-action pair in order to obtain the complete return distribution for any policy. By contrast, model-free methods
are applicable to a wider variety of settings. Unfortunately, the popular technique of using importance-weighted returns
only corrects for the mean under the off-policy distribution. We are not aware of any method that provides off-policy
bounds or even estimates for any parameter of the return, while also handling different domain settings that are crucial
for RL related tasks. A detailed discussion of existing work can be found in the work by Chandak et al. [2].

Contributions: We take the first steps towards a universal off-policy estimator (UnO) that estimates and bounds the entire
distribution of returns, and then derives estimates and simultaneous bounds for all parameters of interest. With UnO, we
make the following contributions:

A. For any distributional parameter (mean, variance, quantiles, entropy, CVaR, CDF, etc.), we provide an off-policy
method to obtain (A.1) model-free estimators; (A.2) exact high-confidence bounds that hold simultaneously for all param-
eters, and perhaps surprisingly, often nearly match or outperform prior bounds specifically designed for the mean and
the variance; and (A.3) approximate bounds using statistical bootstrapping that can often be significantly tighter.

B. The above advantages hold for (B.1) fully observable and partially observable (i.e., with unobserved confounders)
settings, (B.2) Markovian and non-Markovian settings, and (B.3) settings with stationary, smoothly non-stationary, and
discrete distribution shifts in a policy’s performance.

Notation: For brevity, we restrict our focus to the stationary setting in this draft. We consider a partially observable
Markov decision process (POMDP) and write St, Ot, At, and Rt to denote random variables for state, observation, action,
and reward respectively at time t. Let D be a data set (Hi)

n
i=1 collected using behavior policies (βi)

n
i=1, where each Hi

denotes the observed trajectory (O0, A0, β(A0|O0), R0, O1, ...). Let Gi :=
∑T

j=0 γ
jRj be the return of Hi, where ∀i, Gmin <

Gi < Gmax for some finite constants Gmin and Gmax, γ ∈ [0, 1] is a discounting factor and T is a finite horizon length. Let
Gπ and Hπ be the random variables for returns and complete trajectories under any policy π, respectively. For notational
simplicity we consider the set of observations, actions, and rewards to be finite, such that when T is finite, the total
number of possible trajectories is also finite (although all our results extend to the continuous setting as well). Let X be
the finite set of returns corresponding to these trajectories. Let Hπ be the set of all possible trajectories for any policy π.
Sometimes, to make the dependence explicit, we write g(h) to denote the return of trajectory h.
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2 UnO: Universal Off-Policy Estimator

With an aim to communicate the main idea across diverse disciplines at RLDM, we primarily focus on illustrative depic-
tions of the key takeaway points and sketch out the initial steps towards the main theoretical results. We encourage the
readers to check out the work by Chandak et al. [2] for complete details.

For the desired universal method, instead of considering each parameter individually, we suggest estimating (and
bounding) the entire cumulative distribution function (CDF) of returns first, i.e., ∀ν ∈ R, Fπ(ν) := Pr(Gπ ≤ ν ). Any
distributional parameter, ψ(Fπ), can then be estimated (and bounded) using the estimate of Fπ .

Figure 1: While we aim to evaluate π, we only have off-policy data from a
behavior policy β, and the typical use of importance sampling only corrects
for the mean return. To overcome this, we propose an estimator F̂n that uses
importance sampling from the perspective of the CDF to correct for the entire
distribution of returns. Figure on left illustrates return distributions for π
and β. The CDF at any point ν, corresponds to the area under the probability
distribution up until ν. Having order statistics (G(i))

5
i=1 of samples (Gi)

5
i=1

drawn using β, (2) constructs an empirical estimate of the CDF for π (green
shaded region) by correcting for the probability of observing each Gi using
the importance-weighted counts of Gi ≤ ν.

To formalize the idea, we begin by observing that ∀ν ∈ R, Fπ(ν) can be expanded using the fact that the probability that
the return Gπ equals x is the sum of the probabilities of the trajectories Hπ whose return equals x,

Fπ(ν) = Pr(Gπ ≤ ν) =
∑

x∈X ,x≤ν

Pr(Gπ = x) =
∑

x∈X ,x≤ν

( ∑
h∈Hπ

Pr(Hπ = h)1{g(h)=x}

)
, (1)

where 1A = 1 if A is true and 0 otherwise. Now, observing that the indicator function can be one for at most a single
value less than ν as g(h) is a deterministic scalar given h, (1) can be expressed as,

Fπ(ν) =
∑

h∈Hπ

Pr(Hπ = h)
∑

x∈X ,x≤ν

1{g(h)=x} =
∑

h∈Hπ

Pr(Hπ = h)
(
1{g(h)≤ν}

)
,

where the red color is used to highlight changes. Now, under the support assumption [2] as ∀β, Hπ ⊆ Hβ ,

Fπ(ν) =
∑

h∈Hβ

Pr(Hπ = h)
(
1{g(h)≤ν}

)
=
∑

h∈Hβ

Pr(Hβ = h)
Pr(Hπ = h)

Pr(Hβ = h)

(
1{g(h)≤ν}

)
. (2)

The form of Fπ(ν) in (2) is beneficial as it suggests a way to not only perform off-policy corrections for one specific
parameter, as in prior works, but for the entire cumulative distribution function (CDF) of return Gπ . Formally, let ρi :=∏T

j=0
π(Aj |Oj)
βi(Aj |Oj)

denote the importance ratio for Hi, which is equal to Pr(Hπ = h)/Pr(Hβ = h). Then, based on (2), we
propose the following non-parametric and model-free estimator for Fπ ,

∀ν ∈ R, F̂n(ν) :=
1

n

n∑
i=1

ρi1{Gi≤ν}.

Figure 2: An illustration of F̂n (in black) using five return samples. To con-
struct a confidence band for F (π), we show that estimating Fπ(ν) for any specific
ν can be reduced to mean estimation. Therefore, we can obtain confidence
intervals for that specific Fπ(ν) using existing bounds for the mean. Now us-
ing confidence intervals for multiple such points (e.g., solid red lines at three
points (κi)

3
i=1 in the figure) a confidence band F (red shaded region) can be

computed that contains the entire CDF Fπ with high probability. Notice that
the vertical “steps” in F̂n can be of different heights and their total can be
greater than 1 due to importance weighting (this is an expected property of
estimators based on importance sampling). However, since we know that Fπ

is never greater than 1, F can be clipped at 1.
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Figure 3: Given a confidence band F , bounds for many parameters can be obtained using geometry. (Left) For a lower
bound on the mean, we would want a CDF F ∈ F that assigns as high a probability as possible on lower G values, and
F+ is the CDF which does that. To obtain the mean of F+, we use a known property that the mean of a distribution is
the area above the CDF on the positive x-axis minus the area below the CDF on the negative x-axis. Hence, the mean of
the distribution characterized by F+ is the area of the shaded blue region minus the area of the shaded purple region,
and this value is the high-confidence lower bound on the mean. (Middle) Similarly, within F , F+ characterizes the
distribution with the smallest α-quantile. (Right) Building upon the lower bounds for the mean and the quantile, the
lower bound for α-CVaR can be obtained using the area of the shaded blue region minus the area of the shaded purple
region, normalized by α. To get the upper bounds on the mean, quantile, and CVaR, analogous arguments hold using
the lower bound CDF F−. Similar insights for variance, inter-quantile, entropy, etc., are also available [2].

Benefits of F̂n: Due to space constraints, we briefly summarize several benefits of F̂n.
• F̂n provides an unbiased and an uniformly consistent estimator for Fπ , i.e., ∀ν ∈ R, ED[F̂n(ν)] = Fπ(ν), and

supν∈R |F̂n(ν) − Fπ(ν)|
a.s.−→ 0. The results holds even when the data D is collected using multiple behavior policies

(βi)
n
i=1, the domain is non-Markovian or has partial observability (confounders).

• Using F̂n, we can construct off-policy estimators of the inverse CDF as F̂−1
n (α) := min{g ∈ (G(i))

n
i=1|F̂n(g) ≥ α} for

all α ∈ [0, 1], and for the probability distribution estimator as dF̂n(G(i)) := F̂n(G(i)) − F̂n(G(i−1)). Using these, any
parameter ψ(Fπ) (e.g., variance, quantiles, risk measures, etc.) can now be directly estimated.

• As depicted in Figures 2 and 3, F̂n can be used to construct a confidence band F : R → 2R, such that the true Fπ(ν) is
within the set F(ν) with high probability for any given sample-size n > 1, i.e., Pr(∀ν ∈ R, Fπ(ν) ∈ F(ν)) ≥ 1 − δ,
for any δ ∈ (0, 1]. Further, using F , lower and upper bounds for any parameter ψ(Fπ) (e.g., variance, quantiles, risk
measures) can be constructed as ψ− := infF∈F ψ(F ) ψ+ := supF∈F ψ(F ), respectively.

• Having an off-policy estimator of anyψ(Fπ) opens up the possibility of using resampling-based methods, like statistical
bootstrapping, to obtain approximate confidence intervals for ψ(Fπ). We show how they can be combined with UnO
to get significantly tighter bounds with less data, albeit they may not be valid for finite sample sizes.

• Often historical data might be collected over an extended period of time, and thus may be subject to factors influenced
by external changes. We also provide variants of UnO to handle such discrete distribution shifts and smooth non-
stationarities resulting from changes in the environment [2].

Results and Discussion: We provide empirical results for the following domains: (1) An open source implementation
of the FDA-approved type-1 diabetes treatment simulator, (2) A recommender system domain, and (3) A continuous-
state Gridworld with partial observability. Additional results for non-stationary settings and other empirical details are
available in the work by Chandak et al. [2].

Figure 4 reinforces the universality of UnO. UnO accurately estimates the entire CDF and a wide range of its parame-
ters: mean, variance, quantile, and CVaR. Perhaps surprisingly, Figure 4 shows that the proposed guaranteed coverage
bounds, termed UnO-CI here, can be competitive with existing specialized bound, termed Baseline-CI here, for the mean
and variance. In fact, UnO-CI can often require an order of magnitude less data compared to the specialized bounds
for variance; This suggests that the universality of UnO can be beneficial even when only one specific parameter is of
interest. Recall that the proposed bootstrap based bounds are approximate and might not always hold with the specified
probability. However, they stand out by providing significantly tighter, and thus more practicable, confidence intervals.

Now, without being restricted to the most common and basic parameters, researchers and practitioners can fully char-
acterize the behavior of a policy without having to deploy it. For example, practical experiments in neuroscience where
designing new controlled studies could be expensive in terms of time, effort, and money, or for safety-critical applications
of RL, like in healthcare, where it is important to assess the potential human-life risk before deploying the policy. Further,
we have shown how algorithms can perform distributional RL in the completely off-policy setting (without sampling
any new data), thereby bringing methods closer to resembling animal learning. Leveraging UnO in the online off-policy
setting can provide a closer resemblance to animal learning and remains an interesting future direction.
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Figure 4: Performance trend of the proposed estimators and bounds on three domains. The black dashed line is the true
value of Fπ or ψ(Fπ), green is our UnO estimator, red is our CI-based UnO bound, blue is the bootstrap version of our
UnO bound, and yellow is the baseline bound for the mean or variance. Each bound has two lines (upper and lower);
however, some are not visible due to overlaps. The shaded regions are ±2 standard error, computed using 30 trials. The
plots in the top row are for CDFs obtained using 3× 104.5 samples. The next four rows are for different parameters and
share the same x-axis. Bounds were obtained for a failure rate δ = 0.05.
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