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Abstract

Recent research has shown that seemingly fair machine learning models, when used to inform decisions that have an
impact on peoples’ lives or well-being (e.g., applications involving education, employment, and lending), can inadver-
tently increase social inequality in the long term. This is because prior fairness-aware algorithms only consider static
fairness constraints, such as equal opportunity or demographic parity. However, enforcing constraints of this type may
result in models that have negative delayed impact on disadvantaged individuals and communities. We introduce ELF
(Enforcing Long-term Fairness), the first algorithm that provides high-confidence fairness guarantees in terms of delayed
impact, using importance sampling techniques similar to those in the offline reinforcement learning literature. We prove
that ELF will not return an unfair solution with probability greater than a user-specified tolerance. Furthermore, we
show (under mild assumptions) that given sufficient training data, ELF is able to find and return a fair solution if one
exists. We show experimentally that ELF can successfully mitigate long-term unfairness.
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1 Introduction

The use of machine learning for high-stakes applications such as lending, hiring, and criminal sentencing has the poten-
tial to harm historically disadvantaged communities [5, 3, 2]. For example, software meant to guide bank decisions in
lending has been shown to exhibit racial bias [2]. Consequently, extensive research has been devoted to designing algo-
rithms that promote fairness and ameliorate concerns of bias and discrimination for socially impactful applications. The
bulk of this research has focused on the classification setting, in which static fairness definitions, i.e., fairness definitions
that rely on statistical metrics such as true and false positive rates, are studied. However, it has been shown that model
decisions that appear fair with respect to static fairness measures can nevertheless negatively affect the community they
aim to protect in the long-term. For example, consider a bank lending setting, where the repayment predictions influence
lending decisions and can change the future financial stability of different groups (e.g. by not getting a loan, the financial
stability of a person may decay drastically). When a subset of the population is disadvantaged, instead of maximizing
profit, the bank may want (or be required by law) to maximize profit subject to a fairness constraint that considers the
delayed impact of model predictions in terms of the borrowers’ future financial stability. Work that enforces long-term,
or delayed-impact (DI) constraints when the relationship between predictions and DI is known has been proposed [7], but
designing algorithms that mitigate negative delayed impact when the relationship between predictions and DI is not
known has remained an open problem.

In this paper, we develop the first classification algorithm that can ensure with high probability that the classifiers it
learns are fair with respect to delayed impact when the relationship between predictions and DI is not known a priori. To
accomplish this, we simultaneously formulate the fair classification problem as both a classification and reinforcement
learning problem—classification for optimizing the primary objective (a measure of classification loss) and reinforcement
learning when considering DI. Specifically, we use importance sampling techniques similar to those in the offline rein-
forcement learning literature [8], and make use of confidence intervals for the mean [9] to derive a method for computing
high probability bounds on DI fairness.

2 Problem Statement

We now formalize the problem of classification with delayed-impact fairness guarantees. As in the standard classification
setting, a dataset consists of n data points, the ith of which contains Xi, a feature vector describing a person, and a
label Yi. Each data point also contains a set of sensitive attributes, such as race and gender. Though our algorithm
works with an arbitrary number of such attributes, for brevity our notation uses a single attribute, Ti. We assume
that each data point also contains a prediction Ŷ β

i made by a stochastic model β. We call β the behavior model, defined
as β(x, ŷ) := Pr(Ŷ β

i =ŷ|Xi=x). The predictions made by a model deployed in the real-world can have long-term, or
delayed, impact. For example, by influencing who gets a loan, a model’s predictions can affect applicants’ long-term
net worth. Formally, let Iβi be a measure of the delayed impact resulting from deploying β for the person described by
the ith data point. We assume that larger values of Iβi correspond to better delayed impact. We append Iβi to each
data point, and thus define the dataset to be a sequence of n independent and identically distributed (i.i.d.) data points
D := {(Xi, Yi, Ti, Ŷ

β
i , Iβi )}ni=1. For notational clarity, when referring to an arbitrary data point, we write X,Y, T, Ŷ β and

Iβ without subscripts to denote Xi, Yi, Ti, Ŷ
β
i and Iβi , respectively.

Given a dataset D, the goal is to construct a classification algorithm that takes as input D and outputs a new model
πθ that is as accurate as possible while enforcing constraints on delayed impact. This new model πθ is of the form
πθ(x, ŷ) := Pr(Ŷ πθ=ŷ|X=x), where πθ is parameterized by a vector θ ∈ Θ , for some feasible set Θ, and where Ŷ πθ is the
prediction made by πθ given X . Like Iβi , let Iπθ

i be the delayed impact if the model outputs the prediction Ŷ πθ
i .

We model the setting in which a classification model’s prediction depends only on the feature vector X , formalized by the
assumption that for all x, t, y, and ŷ, Pr(Ŷ πθ=ŷ|X=x, Y=y, T=t) = Pr(Ŷ πθ=ŷ|X=x). We also assume that regardless of
the model used to make predictions, the distribution of delayed impact given a prediction remains the same: ∀x, y, t, ŷ, i,
Pr(Iβ=i|X=x, Y=y, T=t, Ŷ β=ŷ) = Pr(Iπθ=i|X=x, Y=y, T=t, Ŷ πθ=ŷ).

Our problem setting can alternatively be described from the reinforcement learning perspective, where feature vectors
are the states of a Markov decision process (specifically, a contextual bandit), predictions are the actions taken by an
agent, and DI is the reward received after the agent takes an action (makes a prediction) given a state (feature vector).
From this perspective, the latter assumption asserts that regardless of the strategy (model) used to choose actions, the
distribution of rewards given an action remains the same.

We consider k delayed-impact objectives gj : Θ → R, j ∈ {1, ..., k} that take as input a parameterized model θ and return
a real-valued measurement of fairness in terms of delayed impact. We adopt the convention that gj(θ) ≤ 0 iff θ causes
behavior that is fair with respect to delayed impact, and gj(θ) > 0 otherwise. To simplify notation, we assume there
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exists only a single DI objective (i.e., k = 1). We focus on the case in which each DI objective is based on a conditional
expected value, having the form g(θ) := τ − E[Iπθ |c(X,Y, T )], where τ ∈ R is a tolerance, and c(X,Y, T ) is a Boolean
conditional relevant to defining the objective. Consider an example in which a bank determines whether to provide a
loan to an applicant. We assume that each individual in the population of loan applicants is associated with type A or
B, e.g., A and B can represent different genders. The bank is interested in enforcing a fairness definition that protects
type A applicants. Specifically, the bank would like to ensure that, for a model πθ being considered, the future financial
status of applicants of type A impacted by πθ’s lending predictions does not decline relative to those induced by the
previously deployed model, β. In this case, Iπθ is the financial status of an applicant t months after the loan application
and c(X,Y, T ) is the Boolean event that an applicant is of type A. Lastly, τ could represent a threshold on which the bank
would like to improve, e.g., the average financial status of applicants in the disadvantaged group given the historical
data collected using β. The bank is therefore interested in enforcing the following DI objective: E[Iπθ |T = A] ≥ τ . Then,
defining g(θ) = τ − E[Iπθ |T = A] ensures that g(θ) ≤ 0 iff the new model πθ satisfies the DI objective. Note that an
additional constraint of the same form can be added to protect group B.

Algorithmic properties of interest. We would like to ensure that g(θ) ≤ 0, where θ is the model returned by a classi-
fication algorithm. However this is often not possible, as it requires highly accurate assumptions of prior knowledge
about how predictions influence delayed impact. Instead, we aim to create an algorithm that uses data to reason about
its confidence that g(θ) ≤ 0. That is, we desire a classification algorithm, a, where a(D) ∈ Θ is the solution provided by
the algorithm when given dataset D as input, that satisfies DI constraints of the form

Pr(g(a(D)) ≤ 0) ≥ 1− δ, (1)

where δ ∈ (0, 1) limits the admissible probability that the algorithm returns a model that is unfair with respect to the DI
objective. Algorithms that satisfy (1) are called Seldonian [10]. In practice, there might be constraints that are impossible
to enforce [6] or the amount of data may be insufficient to ensure fairness with high confidence. In such cases, instead of
returning a solution the algorithm does not trust, the algorithm should return “No Solution Found” (NSF). Let NSF ∈ Θ
and g(NSF) = 0, indicating that it is always fair for the algorithm to say “I’m unable to ensure fairness with the required
confidence.”

3 Methods for Enforcing Delayed Impact

The distribution of delayed impacts in D is a result of using the model β to make predictions. However, we are interested
in evaluating the DI of a different model, πθ. This presents a challenging problem: given data that includes the DI when
a model β was used to make predictions, how can we estimate the DI if πθ were used instead?

We solve this problem using techniques from the reinforcement learning literature called off-policy evaluation methods—
methods that use data from running one policy (decision-making model) to predict what would happen (in the long-
term) if a different policy were used to make decisions. Specifically, we use an off-policy evaluation method called
importance sampling [8] to obtain a new random variable Îπθ , constructed using data from β, such that E[Îπθ |c(X,Y, T )]=

E[Iπθ |c(X,Y, T )]. For each data point, the importance sampling estimator, Îπθ , weights the observed delayed impacts Iβ

based on how likely the prediction Ŷ β is under πθ. If πθ would make the label Ŷ β more likely, then Iβ is given a larger
weight (at least one), and if πθ would make Ŷ β less likely, then Iπθ is given a smaller weight (positive, but less than one).
Formally, the importance sampling estimator is Îπθ = πθ(X, Ŷ β)

(
β(X, Ŷ β)

)−1
Iβ , where the term πθ(X, Ŷ β)/β(X, Ŷ β) is

called the importance weight. This particular weighting scheme is chosen to ensure that Îπθ is an unbiased estimator of Iπθ ,
which can be proven under the assumption that the model πθ can only select labels for which there is some probability of
the behavior model selecting.

Bounds on delayed impact. Given unbiased estimates of Iπθ , computed according to the scheme discussed above, we
can construct unbiased estimates of g(θ) by subtracting each estimate of Iπθ from τ , the user-defined tolerance. We
now discuss how to use these estimates of g(θ), along with confidence intervals for the mean, to derive high confidence
upper bounds on g(θ). Given a vector of m i.i.d. samples (Zi)

m
i=1 of a random variable Z, let Z̄ = 1

m

∑m
i=1 Zi be the

sample mean, let σ(Z1, ..., Zm) =
√

1
m−1

∑m
i=1(Zi − Z̄)2 be the sample standard deviation (with Bessel’s correction), and

let δ ∈ (0, 1) be a confidence level. From Student [9], we have the property that if
∑m

i=1 Zi is normally distributed,

then Pr
(
E[Zi] ≥ Z̄ − σ(Z1,...,Zm)√

m
t1−δ,m−1

)
≥ 1 − δ, where t1−δ,m−1 is the 1 − δ quantile of the Student’s t distribution

with m − 1 degrees of freedom. We can use this property to obtain a high-confidence upper bound for the mean of
Z : Uttest(Z1, . . . , Zm) = Z̄ + σ(Z1,...,Zm)√

m
t1−δ,m−1.

Let ĝ be a vector of i.i.d. and unbiased estimates of g(θ) such that the sample mean of ĝ is normally distributed. These esti-
mates can be provided to Uttest to derive a high-confidence upper bound on g(θ): Pr(τ−E[Îπθ |c(X,Y, T )] ≤ Uttest(ĝ)) ≥
1− δ.
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Complete algorithm. Our algorithm (Algorithm 1) has three main steps. In the first step, the dataset D is divided into
two datasets, Dc and Df (line 1). In the second step (line 3), which we refer to as candidate selection, Dc is used to find and
train a model, called the candidate solution, θc. The last step (lines 4–9) is the fairness test, in which Df is used to compute
a (1−δ)-confidence upper bound on g(θc) and determine whether NSF or the candidate solution should be returned.

In particular, in the fairness test, unbiased estimates of g(θc) are calculated using the importance sampling method
described previously (lines 4–7). These estimates are used to calculate a high-confidence upper bound, U , on g(θc) using
Student’s t-test (line 9). Finally, if U is below 0, then the solution θc is returned. If not, the algorithm returns NSF.

Algorithm 1 ELF(D, c, δ, τ, β)

1: Dc, Df ← partition(D)
2: nDf

= length(Df ); ĝ ← ⟨ ⟩
3: θc ← argminθ∈Θ cost(θ,Dc, c, δ, τ, β, nDf

)
4: for i ∈ {1, ..., n} do
5: if c(Xi, Yi, Ti) is True then

6: ĝ.append
(
τ − πθc (Xi,Ŷ

β
i )

β(Xi,Ŷ
β
i )

Iβi

)
7: end if
8: end for
9: if Uttest(ĝ) ≥ 0 then return NSF else return θc

In candidate selection, a similar strategy is used to calcu-
late the cost of a potential solution θ. Again, unbiased
estimates of g(θ) are calculated (Algorithm 2 lines 2–6),
this time using Dc. Instead of calculating a high confi-
dence upper bound on g(θ) using Student’s t-test, we cal-
culate an inflated upper bound (Algorithm 2 lines 7–8).
Our choice to inflate the confidence interval is empirically
driven and was first proposed for other Seldonian algo-
rithms [10]. Finally, if the inflated upper bound is higher
than a small negative constant (−ξ/4), the cost associated
with the loss of θ, ℓ̂(θ,Dc), is returned. Otherwise, the cost
of θ is defined as the sum of the inflated upper bound and
the maximum loss that can be obtained using Dc (Algo-
rithm 2 lines 9–10). This discourages candidate selection
from returning models unlikely to pass the fairness test.

4 Empirical Evaluation

To empirically evaluate our method, we consider a classifier tasked with making predictions about people in the United
States foster care system; for example, whether youth currently in foster care are likely to get a job in the near future.
These predictions may have a delayed impact on the person’s life if, for instance, they influence whether that person
receives additional financial aid. Here the goal is to ensure that a trained classifier is fair with respect to delayed impact
when considering race. Our experiments use two data sources from the National Data Archive on Child Abuse and
Neglect [4]: (i) the Adopting and Foster Care Analysis and Reporting System—a dataset containing demographic and
foster care-related information about youth; and (ii) the National Youth in Transition Database (Services and Outcomes)—
a dataset containing information about the well-being, financial, and educational status of youth over time and during
their transition from foster care to independent adulthood. We wish to guarantee with high probability that the DI caused
by a new classifier, πθ, is better than the DI resulting from the currently-deployed classifier, β. This guarantee should
hold simultaneously for both races: White (instances where T = 0) and Black (instances where T = 1). In the following
experiments, the confidence levels δ0 and δ1, associated with these objectives, are both set to 0.1.

Algorithm 2 cost(θ,Dc, c, δ, τ, β, nDf
)

1: ĝ ← ⟨ ⟩
2: for i ∈ {1, ...,m} do
3: if c(Xi, Yi, Ti) is True then

4: ĝ.append
(
τ − πθ(Xi,Ŷ

β
i )

β(Xi,Ŷ
β
i )

Iβi

)
5: end if
6: end for
7: Let λ = 2; nĝ = length(ĝ)

8: U+ = 1
nĝ

(∑nĝ

ι=1 ĝι
)
+ λ σ(ĝ)√

nDf

t1−δ,nDf
−1

9: ℓmax = maxθ′∈Θ ℓ̂(θ′, Dc)

10: if U+≤− ξ
4 return ℓ̂(θ,Dc) else return (ℓmax + U+)

Preventing Delayed-Impact Unfairness. We first eval-
uate whether ELF can prevent DI unfairness with high
probability, and whether existing algorithms fail. We com-
pare ELF with a fairness-unaware algorithm (logistic re-
gression (LR)) and three state-of-the-art fairness-aware al-
gorithms: (i) Fairlearn [1], (ii) Fairness Constraints [11],
and (iii) quasi-Seldonian algorithms (QSA) [10] designed
to enforce static fairness constraints. We consider five
static fairness constraints: demographic parity (DP),
equalized odds (EqOdds), disparate impact (DisImp),
equal opportunity (EqOpp), and predictive equality (PE).

In this comparison, we investigate how often each
fairness-aware algorithm returns an unfair model (with
respect to the DI constraints) as a function of the amount
of training data. We refer to the probability that an algorithm returns an unfair model as its failure rate. To measure the
failure rate, we compute how often the classifiers returned by each algorithm are unfair when evaluated on a signifi-
cantly larger dataset, to which the algorithms do not have access during training time. Figures 1a and 1b present the
failure rate of each algorithm as a function of the amount of available training data. We computed all failure rates and
corresponding standard errors over 500 trials. Notice that the solutions returned by ELF are always fair with respect to
the DI constraints.1 Existing methods that enforce static fairness criteria, by contrast, either (i) always fail to satisfy both

1ELF does not return solutions if trained with n < 1,000 data points because it cannot ensure DI fairness with high confidence.
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DI constraints, independently of the amount of training data; or (ii) always fail to satisfy one of the DI constraints—the
one related to delayed impact on Black youth.

The Cost of Ensuring Delayed-Impact Fairness. The previous analyses show that ELF is capable of satisfying DI
constraints with high probability, but this often comes at a cost. First, there may be a trade-off between the amount of
training data and the confidence that a fair solution has been identified. Recall that some algorithms (including ours)
may not return a solution if they cannot ensure fairness with high confidence. Therefore, we study how often each
algorithm identifies and returns a candidate solution as a function of n. Figure 1c shows that as the amount of training
data increases, the probability of ELF returning solutions increases rapidly. Although some competing techniques always
return solutions, or may require less training data than ELF, these solutions never satisfy both DI constraints.

Secondly, there may be a trade-off between satisfying fairness constraints and optimizing accuracy. Figure 1d presents
the accuracy of classifiers returned by different algorithms as a function of n. Even though there is an accuracy gap
of approximately 10% in the limit, ELF always returns fair solutions, while other methods fail to satisfy at least one DI
constraint. While there is a cost to enforcing DI constraints, ELF succeeds in its main objectives: to ensure DI fairness with high
probability, without requiring unreasonable amounts of data, and with no significant loss of accuracy.
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(b) Failure rate 2.
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Figure 1: Algorithms’ failure rates with respect to the DI constraints associated with White people (a) and Black people
(b), as a function of n. The black horizontal lines indicate the maximum admissible probability of unfairness, δ0 =
δ1 = 10%. In (c) we show the probability that algorithms (subject to different fairness constraints) return a solution as a
function of n. Finally, in (d) we show the accuracy of the solutions returned by algorithms (subject to different fairness
constraints) as a function of n. All plots use the following legend: ELF LR QSA with DP QSA with
EqOdds QSA with EqOpp QSA with PE QSA with DisImp Fairlearn with DP Fairlearn with
EqOdds Fairness Constraints.
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