
Understanding Regression Failures
through Test-Passing and Test-Failing Code Changes

Roykrong Sukkerd , Ivan Beschastnikh , Jochen Wuttke , Sai Zhang , Yuriy Brun
University of Washington University of Massachusetts

Seattle, WA, USA Amherst, MA, USA
{rsukkerd, ivan, wuttke, szhang}@cs.washington.edu brun@cs.umass.edu

Abstract—Debugging and isolating changes responsible for re-
gression test failures are some of the most challenging aspects
of modern software development. Automatic bug localization
techniques reduce the manual effort developers spend examining
code, for example, by focusing attention on the minimal subset
of recent changes that results in the test failure, or on changes
to components with most dependencies or highest churn.

We observe that another subset of changes is worth the devel-
opers’ attention: the complement of the maximal set of changes
that does not produce the failure. While for simple, independent
source-code changes, existing techniques localize the failure cause
to a small subset of those changes, we find that when changes
interact, the failure cause is often in our proposed subset and
not in the subset existing techniques identify.

In studying 45 regression failures in a large, open-source
project, we find that for 87% of those failures, the complement
of the maximal passing set of changes is different from the min-
imal failing set of changes, and that for 78% of the failures, our
technique identifies relevant changes ignored by existing work.
These preliminary results suggest that combining our ideas with
existing techniques, as opposed to using either in isolation, can
improve the effectiveness of bug localization tools.

I. INTRODUCTION

When a regression test fails, developers examine the
changes since the last time the test passed to identify the fail-
ure cause.2 Considering the minimal subsets of changes that
break the test can help developers localize the failure cause
and identify flaws in their reasoning [5], [10], [11].

Intuitively, changes made since the last time the test passed
can be divided into two subsets: the minimal set of changes
that produces the failure (we call this set ∆ f ) and the maxi-
mal set of changes that does not produce the failure (we call
this set ∆p). However, interactions between the changes may
violate this intuition, resulting in more complex relationships
than ∆ f = ∆p. In practice, we find that for 87% of regression
failures, these sets are not complementary (see Section III).
Thus, ∆p may contain information relevant to debugging that
is not in ∆ f , and that information may be used to improve

1This work is supported by NSF grants CNS-0855252 and CCF-0963757,
and DARPA contracts FA8750-12-2-0107 and FA8750-12-C-0174.

2We refer to the parts of the source code that cause a test to fail as the
failure cause. While the defect, which may be in the tests, in the requirements,
or elsewhere in the project, is the real cause of the problem, the failure cause
is often the defect and developers often attempt to find it first.

existing techniques that focus the developer on parts of ∆ f or
efficiently computed approximations of ∆ f [10].

To understand why ∆ f and ∆p may not be complementary,
consider an example: A developer introduces two changes,
each of which independently causes a test failure. The
∆ f (what existing techniques find) consists of only a single
change. Meanwhile both of the changes are in ∆p (the com-
plement of ∆p). Further, consider a developer who is given
∆ f . If she were to fix the problem in ∆ f , the test would still
fail. This can be misleading and can make debugging un-
necessarily hard. Here, ∆p is more relevant to the test failure.
Other common situations, such as writing a buggy method that
is not exercised by the regression tests until another change
calls that method, can cause even more headaches. Overall,
for 78% of the regression failures we examined, ∆p contained
changes that were not in ∆ f .

The main contribution of this paper is the counterintu-
itive observation that ∆ f and ∆p are often not complemen-
tary. We examine the possible relationships between ∆ f and
∆p, and provide source-code examples to illustrate how some
of these unexpected situations may occur in practice. Further,
in analyzing the revision history of an open-source system, we
find that the counterintuitive relationships between ∆ f and ∆p
occur frequently: 87% of the time. The impact of this work
is that this observation can lead to improving the effec-
tiveness of existing techniques, such as delta debugging. In
our preliminary study, for 78% of the 45 real regression fail-
ures we examined, ∆p provides relevant information ignored
by techniques that only consider ∆ f .
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Fig. 1. A conceptual overview of the relationship between ∆p and ∆ f , two
sets of changes we aim to use to help understand and localize bugs.
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class Circle {
    double r, area;

    Circle(double r_) {
        this.r = r_;

    }

    double getArea() {
        return this.area;
    }

    public String toString() {
        return "Circle[Area=" +
          String.format("%.3g", this.area) +
          "]";
    }
}

class Circle {
    double r, area;

    Circle(double r_) {
        this.r = r_;

    }

    double getArea() {
        return this.area;
    }

    public String toString() {
        return "circle[area=" +
           String.format("%.3g", this.getArea()) +
           "]";
    }
}

class Circle {
    double r, area;

    Circle(double r_) {
        this.r = r_;
        this.area = Math.pow(this.r, 2);
    }

    double getArea() {
        return this.area;
    }

    public String toString() {
        return "Circle[Area=" +
          String.format("%.3g", this.area) +
          "]";
    }
}

class Circle {
    double r;

    Circle(double r_) { this.r = r_; }

    double getPi() {
        return Math.PI;
    }

    double getArea() {
        return this.r * this.r * getPi();
    }

    public String toString() {
        return "circle[area=" +
          String.format("%.3g", this.getArea()) +
          "]";
    }
}

class Circle {
    double r;

    Circle(double r_) { this.r = r_; }

    double getPi() {
        return 3.14;
    }

    double getArea() {
        return this.r * this.r * getPi();
    }

    public String toString() {
        return "circle[area=" +
          String.format("%.3g", this.getArea()) +
          "]";
    }
}

class Circle {
    double r;

    Circle(double r_) { this.r = r_; }

    double getPi() {
        return 3.14;
    }

    double getArea() {
        return this.r * this.r * getPi();
    }

    public String toString() {
        return "circle[area=" +
          String.format("%.3g", this.getArea()) +
          "]";
    }
}

@Test
public void testArea() {
    Circle c = new Circle(1.0 / Math.sqrt(Math.PI));
    assertEquals("circle[area=1.00]", c.toString());
}

p1

p2

c1 p1 + �p

c2 p2 + �f p2 + �p

test

p1 + �f
class Circle {
    double r;

    Circle(double r_) { this.r = r_; }

    double getPi() {
        return Math.PI;
    }

    double getArea() {
        return this.r * this.r * Math.PI;
    }

    public String toString() {
        return "circle[area=" +
          String.format("%.3g", this.getArea()) +
          "]";
    }
}

class Circle {
    double r, area;

    Circle(double r_) {
        this.r = r_;

    }

    double getArea() {
        return this.r * this.r * Math.PI;
    }

    public String toString() {
        return "circle[area=" +
         String.format("%.3g", this.getArea()) +
         "]";
    }
}
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Fig. 2. Examples of two changes to a Circle class that break the test in (i). In the example in (a)–(d), the failure cause lies in ∆ f but not in ∆p (case 3
in Figure 3). In the example in (e)–(h), the failure cause lies in ∆p but not in ∆ f , and also lies outside of both sets (case 4 in Figure 3).

II. UNPACKING ∆: INTERESTING CHANGE SUBSETS

Consider a regression test t and a parent (p) version of a
codebase that passes t, along with a set of changes ∆ that
when applied to p produces the child (c) version that fails t.
Figure 1 overviews the relationships between p, c and the five
sets of changes this section defines: ∆, ∆p, ∆p, ∆ f , and ∆ f .
For simplicity, we assume here that ∆ does not modify the
source of t, and we do not consider external causes of t’s
failure, which are discussed elsewhere [9].

Our goal in localizing a bug is to identify a small subset
of changes that reproduces t’s failure in the same way as the
entire set of changes. Existing bug localization work that con-
siders the changes’ impact on t focuses on finding the minimal
subset of ∆ that, when applied to p, is compilable and repro-
duces t’s failure [5], [10], [11]. We call this subset ∆ f , and
refer to p with ∆ f applied as the “minimal failing” version.
Note that there always exists at least one non-empty ∆ f (∆ f
may equal ∆), and there may be multiple, equal-sized ∆ f .

Another relevant subset of ∆ is the maximal subset of ∆

that, when applied to p, is compilable and passes t. In other
words, all the changes in ∆ that do not break the test. We call
this subset ∆p, and refer to p with ∆p applied as the “maximal
passing” version. Note that ∆p must be a proper subset of ∆,

∆p may be empty, and there may be multiple, equal-sized ∆p.
Since ∆ f captures just those changes that cause the test to

fail, intuitively, ∆ f and ∆p should be each other’s comple-
ments: ∆p ∪ ∆ f = ∆ and ∆p ∩ ∆ f = /0. In other words, ∆ f
should be equal to ∆p = ∆\∆p, the complement of ∆p. How-
ever, in practice, we find that often, ∆ f 6= ∆p. In the next
section, we enumerate all nine possible relationships between
∆ f and ∆p and analyze how often each occurs in practice.

III. RELATING ∆ f AND ∆p

There are nine possible relationships between ∆p, ∆ f , and ∆

(Figure 3). Each relationship provides unique information that
may help identify the regression failure cause. Before enumer-
ating these relationships, we first discuss two code samples to
provide an intuition for the sets of changes we study.

A. Illustrative Examples

Figure 2 shows code examples that illustrate two of the
counterintuitive relations between ∆ f and ∆p. The example in
Figure 2(a–d) corresponds to case 3 from Figure 3, in which
∆ f is larger than ∆p. The p1 code version in Figure 2(a)
passes the test in Figure 2(i), but the two changes highlighted
in Figure 2(b) — an incorrect update to the getPi method, and
a new call to getPi — cause the test to fail. Here, as shown
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in Figure 2(c), ∆ f = ∆ since just breaking getPi will not
break the test without also adding a call to getPi. However,
∆p, highlighted in Figure 2(d), consists of just one of the
changes in ∆ f — the call to getPi. The failure cause lies in
∆ f \∆p = ∆p. This phenomenon is called interference [10].

The example in Figure 2 (e)–(h) corresponds to case 4 from
Figure 3, in which ∆p is larger than ∆ f . The p2 code version
in Figure 2(e) passes the test in Figure 2(i), but three changes
highlighted in Figure 2(f) — an update to the toString
method and two changes that cache the result of a circle’s
area — cause the test to fail. There are two independent fail-
ure causes: incorrect area computation and incorrect “Circle”
and “Area” capitalization. Here, ∆ f in Figure 2(g) consists of
only one change, and contains neither of the failure causes!
(The test still fails, but for a different reason.) Meanwhile, ∆p
in Figure 2(h) contains the buggy toString modification.

B. Voldemort Study

Figure 3 enumerates all the nine possible relationships be-
tween ∆p, ∆ f , and ∆.3 To understand the practical frequency
of these relationships, we analyzed Voldemort [7], an open-
source distributed key-value storage system.

Voldemort’s development process has two properties that
are important to our study: it has an extensive test suite, and
it does not enforce strict commit standards — commits are
allowed to break tests. We considered three randomly cho-
sen ranges of roughly 100 commits each: commits numbered
3a64322–83668c1, f3cd4f9–7376cc6, and f92c899–4c49cf6.
Due to branches within the history structure, these ranges con-
tained 109, 97, and 99 parent-child pairs, respectively.

Step 1. We first ran the test suite on each revision and
identified all parent-child pairs with at least one test that passed
in the parent and failed in the child. We observed 45 such pairs
— each pair represents a regression failure. For each of these
pairs, we computed ∆, making sure no changes to the tests
occurred (which could have caused the regression failures).

Step 2. We then used a file-level change granularity4 to
exhaustively consider all subsets of ∆, applying each subset to
p. We ran the test suite on the resulting versions that compiled.
We considered a compiling version passing, if at least one of
the tests that failed in p passed, and no other test that passed
in p failed. Otherwise we considered the version failing.

Step 3. For each regression failure, we identified the mini-
mal ∆ f and the maximal ∆p (minimal ∆p). We then compared
the two to determine their relationship. Figure 3 shows the ob-
served frequencies of relationships. In cases with multiple ∆ f
or ∆p, we labeled each ∆ f and ∆p pair as one of the relation-
ships in Figure 3, and scaled their frequencies accordingly.5

3Certain other relationships are impossible. For example, ∆p cannot be
the empty set, since this would imply ∆p = ∆ and that the maximal passing
version is c, but c fails t, while the maximal passing version passes t.

4We considered all changes made to one file atomic. Finer granularity
provides higher accuracy, but our analysis provides a conservative bound: if
∆ f 6= ∆p at the file level, the property also holds at all finer granularities.

5That is, if one parent-child pair had three different, equal-sized, minimal
∆ f -∆p pairs, each contributed only 1

3 of an occurrence to the frequency of its
∆ f -∆p relationship.
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Fig. 3. The nine possible relationships between ∆ (black box), ∆p (orange),
and ∆ f (green), annotated with and ordered according to decreasing frequency
of occurrence in the Voldemort case study (Section III-B).

C. Study Results and Discussion

Overall, we found that of the 45 regression failures we iden-
tified, cases 2 and 5 in Figure 3 — the cases for which
∆ f = ∆p — occur only 12.8% of the time. The other, coun-
terintuitive cases occur 87.2% of the time, indicating that ex-
amining ∆p is at least as important as ∆ f , and provides new
information not contained in ∆ f .

Of the nine possible relationships in Figure 3, only seven
occurred in our study. In the most common case, 1 , which
occurred for 65% of the regression failures, all compilable
subsets of ∆ failed the test. For both this case and case 4 ,
which occurred for 8.7% of the regression failures, ∆ f ⊂ ∆p.
Thus, reporting ∆p would include more information than re-
porting ∆ f , which is what delta debugging reports for these
cases.6 Identifying whether this information would improve
developer debugging speed or quality remains as future work,
though the fact that the changes in ∆p are not in the maximal
set of changes that keeps the test passing suggests that they
are relevant in debugging. For example, in the bug in Figure 2
(e)–(h), ∆p contains a failure cause, whereas ∆ f does not.

The intuitive case, 2 , with ∆ f = ∆p, occurs for only 10.5%
of the regression failures. This finding supports our hypothe-
sis that interactions among changes are complex enough that
∆ f is rarely identical to ∆p, and that both are worth consid-
ering when debugging. When ∆ f = ∆p (as in this case), this
information suggests that the failure cause is in those sets.

For 9.3% of the regression failures (case 3 ), ∆ f fails to
localize the failure cause (∆ f = ∆), whereas ∆p does localize
it (∆p ⊂ ∆). Because ∆p is compilable, here, applying the
changes in ∆p must pass the test (otherwise, ∆ f would equal
the smaller ∆p). Therefore, ∆p and ∆p split ∆ f into two disjoint
sets, both of which pass the test. The buggy behavior occurs

6If ∆p fails the test, delta debugging may handle this as a special case
and report something larger than ∆ f .
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because of the interaction between the two sets of changes,
and not in either of the sets on its own. Delta debugging calls
this property of changes interference. While there is value in
considering both ∆ f and ∆p during debugging, in this case,
it can also be helpful to know that ∆ f can be split into two
interfering subsets.

For 4.0% of the regression failures (2.3% in case 6 and
1.7% in case 7 ), ∆ f and ∆p disagree on which changes are
responsible for the failure. These cases are counterintuitive
and particularly interesting. In case 6 , the minimal failing
version of the code is a subset of the maximal passing version:
∆ f ⊂ ∆p. This means there are changes in ∆p that are not in
∆ f and these changes suppress the failure in ∆ f . This violates
delta debugging’s requirement that adding changes to a set of
failing changes cannot make the test pass. As a result, a single
execution of delta debugging will not find this ∆ f , though
iterative runs over the right subsets would. In case 7 , some
changes are in both ∆p and ∆ f : ∆ f ∩∆p 6= /0. Considering ∆ f ∩
∆p before the larger ∆ f may lead to improved bug localization,
though the changes in ∆ f and ∆p can both aid the process.

Finally, for 2.3% of the regression failures (case 5 ), neither
∆ f nor ∆p localize the bug. There exist no subset of ∆ that
compiles (if one existed, it would either pass or fail the test
and reduce either ∆p or ∆ f , respectively).

Cases 8 and 9 did not appear in our case study. For 8 ,
∆p ⊂ ∆ f , so ∆p provides no new information that is not in ∆ f .
It may, however, help identify which changes to examine first.
Similarly, in case 9 , ∆ f ∩∆p may be worth examining first,
which may be helpful because each change in ∆ is either in
∆ f or in ∆p.

IV. RELATED WORK

When regression failures occur, developers may be inter-
ested in knowing which recent changes they should exam-
ine. Prior work considered a variety of options, including
changes related to the most cross-cutting concerns [1], changes
to modules with the highest churn [3], changes made to recent
changes [13], changes to modules with the most dependen-
cies [12], and the smallest subset of the recent changes that
exhibits the test failure [10].

The work most closely related to ours is delta debug-
ging [10], which computes (or in various efficient ways ap-
proximates) ∆ f . Ren et al. [5] introduce an alternate but sim-
ilar approach to determine ∆ f , and Zhang et al. [11] combine
those two approaches to improve efficiency. Our work focuses
on whether considering a closely related set, ∆p, and its rela-
tionship with ∆ f , can improve bug localization. Further, many
of the efficiency techniques from delta debugging can make
our approach more efficient, as we discussed in Section III-C.

While most change impact analysis work has also focused
on ∆ f [2], some has considered ∆p, although not for bug lo-
calization. Wloka et al. [8] have used change impact analysis
to find changes that are considered safe to commit to version
control repositories or to share with other developers. This
work begins to explore the value of ∆p, though our focus is

quite different. We believe that analyzing the relationships be-
tween ∆ f and ∆p can aid debugging and have demonstrated
that in practice, ∆p and ∆ f often contain different information
about the regression failure cause.

Tools and techniques that build on results of finding ∆ f ,
including automated fault localization techniques [4], [5], [6],
are complementary to our work and can likely be improved
by considering the relationship between ∆p and ∆ f .

V. CONTRIBUTIONS AND EMERGING FUTURE WORK

This paper considers the relationship between two subsets
of changes relevant to diagnosing regression failures: ∆ f , the
minimal set of changes that produces the failure, and ∆p, the
maximal set of changes that does not produce the failure.
Counterintuitively, these sets are often not complementary;
complex dependencies force some changes to be in neither set
and some to be in both. In evaluating 45 real-world regression
failures from an open-source project’s history, we found that
in 87% of the failures, the two sets were non-complementary,
and in 78% of the failures, the complement of ∆p contained
changes relevant to debugging that were not in ∆ f .

Our preliminary results support our hypothesis that ∆ f and
∆p relate in complex ways and that both are relevant to de-
bugging. Future work will we check if our findings generalize
to a broader set of regression failures, and will examine the
relationships between ∆ f and ∆p at finer change granularity.

Our finding can improve several existing bug localization
techniques that have previously focused only on ∆ f . Further,
considering the complex relationships between ∆ f and ∆p may
lead to new bug localization techniques. Ultimately, we hope
to empirically verify that these bug localization techniques im-
prove debugging speed and quality.
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