
Empir Software Eng (2018) 23:2901–2947
https://doi.org/10.1007/s10664-017-9550-0

Do automated program repair techniques repair hard
and important bugs?

Manish Motwani1 · Sandhya Sankaranarayanan1 ·
René Just1 · Yuriy Brun1

Published online: 18 November 2017
© Springer Science+Business Media, LLC 2017

Abstract Existing evaluations of automated repair techniques focus on the fraction of the
defects for which the technique can produce a patch, the time needed to produce patches, and
how well patches generalize to the intended specification. However, these evaluations have
not focused on the applicability of repair techniques and the characteristics of the defects
that these techniques can repair. Questions such as “Can automated repair techniques repair
defects that are hard for developers to repair?” and “Are automated repair techniques less
likely to repair defects that involve loops?” have not, as of yet, been answered. To address
such questions, we annotate two large benchmarks totaling 409 C and Java defects in real-
world software, ranging from 22K to 2.8M lines of code, with measures of the defect’s
importance, the developer-written patch’s complexity, and the quality of the test suite. We
then analyze relationships between these measures and the ability to produce patches for
the defects of seven automated repair techniques — AE, GenProg, Kali, Nopol, Prophet,
SPR, and TrpAutoRepair. We find that automated repair techniques are less likely to pro-
duce patches for defects that required developers to write a lot of code or edit many files,
or that have many tests relevant to the defect. Java techniques are more likely to produce
patches for high-priority defects. Neither the time it took developers to fix a defect nor
the test suite’s coverage correlate with the automated repair techniques’ ability to produce

Communicated by: Martin Monperrus and Westley Weimer

� Manish Motwani
mmotwani@cs.umass.edu

Sandhya Sankaranarayanan
ssankar@cs.umass.edu

René Just
rjust@cs.umass.edu

Yuriy Brun
brun@cs.umass.edu

1 College of Information and Computer Science, University of Massachusetts,
Amherst, MA 01003-9264, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9550-0&domain=pdf
http://orcid.org/0000-0001-5129-3980
http://orcid.org/0000-0003-3027-7986
mailto:mmotwani@cs.umass.edu
mailto:ssankar@cs.umass.edu
mailto:rjust@cs.umass.edu
mailto:brun@cs.umass.edu

2902 Empir Software Eng (2018) 23:2901–2947

patches. Finally, automated repair techniques are less capable of fixing defects that require
developers to add loops and new function calls, or to change method signatures. These find-
ings identify strengths and shortcomings of the state-of-the-art of automated program repair
along new dimensions. The presented methodology can drive research toward improving
the applicability of automated repair techniques to hard and important bugs.

Keywords Automated program repair · Repairability

1 Introduction

Automated program repair research has produced dozens of repair techniques that use a
buggy program and a specification of that program (without the bug) to produce a program
variant that satisfies the specification (Weimer et al. 2013; Jin et al. 2011; Bradbury and Jal-
bert 2010; Arcuri and Yao 2008; Carzaniga et al. 2013; Wei et al. 2010; Pei et al. 2014; Liu
and Zhang 2012; Jeffrey et al. 2009; Wilkerson et al. 2012; Perkins et al. 2009; Coker and
Hafiz 2013; Debroy and Wong 2010; Demsky et al. 2006; Orlov and Sipper 2011; Weimer
et al. 2009; Weimer et al. 2009; Le Goues et al. 2012a, b; Gopinath et al. 2011; Carbin
et al. 2011; Elkarablieh and Khurshid 2008; Qi et al. 2015; Dallmeier et al. 2009; Kim et al.
2013; Tan and Roychoudhury 2015; Nguyen et al. 2013; Sidiroglou and Keromytis 2005;
Qi et al. 2013; Mechtaev et al. 2015, 2016; Ke et al. 2015; Sidiroglou-Douskos et al. 2015;
Long and Rinard 2015, 2016b; DeMarco et al. 2014; Jiang et al. 2016; Weiss et al. 2017; Le
et al. 2017). This specification is typically partial, e.g., a set of tests describing the desired
behavior. Due to the partial nature of the specification, patches that satisfy the written spec-
ification may not satisfy the intended, unwritten, full specification, and recent work has
evaluated the quality of the repairs produced by these techniques, finding that repairs often
break existing functionality (Brun et al. 2013; Smith et al. 2015; Qi et al. 2015; Martinez
et al. 2017). More recent techniques have produced higher-quality repairs that generalize to
the intended specification (Long and Rinard 2015, 2016b; Ke et al. 2015).

However, while research has evaluated whether patches can be produced and the quality
of those patches, prior work has not studied the defect characteristics that make automated
repair more applicable. This paper evaluates the kinds of defects for which automated repair
techniques produce patches, answering the question of whether existing techniques can
repair important defects, or defects that are hard for developers to repair. The same way
work on evaluating patch quality (Brun et al. 2013; Smith et al. 2015; Qi et al. 2015; Mar-
tinez et al. 2017; Pei et al. 2014) has led to work on improving repair quality (Long and
Rinard 2015, 2016b; Ke et al. 2015), our intent is for this paper to lead to work on improving
the applicability of automated repair to hard-to-fix and critical defects. Repair techniques
have been evaluated in terms of how many defects they produce a patch for (e.g., Le Goues
et al. (2012a), Ke et al. (2015), Qi et al. (2015), and Kim et al. (2013)), how quickly they
produce patches (e.g., Le Goues et al. (2012a) and Weimer et al. (2013)), and the quality
of the patches they produce, such as developer-judged correctness (Qi et al. 2015; Long
and Rinard 2016b; Martinez et al. 2017), how many independent tests the patched pro-
grams pass (Brun et al. 2013; Smith et al. 2015; Jiang et al. 2016), how maintainable the
patches are Fry et al. (2012), and how likely developers are to accept them (Kim et al. 2013).
Researchers have stressed the need to identify the classes of defects for which repair tech-
niques work well (Monperrus 2014); however, to the best of our knowledge, this is the first

Empir Software Eng (2018) 23:2901–2947 2903

attempt to relate the importance or difficulty of a developer fixing a defect to the success of
automated repair.

The largest research challenge in determining how defect characteristics correlate with
automated repair technique success is obtaining a large dataset of real-world defects, anno-
tated with characteristics of defect importance and complexity. To that end, we annotate
two widely used defect datasets — ManyBugs (Le Goues et al. 2015) consisting of 185 real-
world defects in nine large C projects up to 2.8MLOC, and Defects4J (Just et al. 2014)
consisting of 357 real-world defects in five large Java projects up to 96KLOC — and make
these annotated datasets available for future evaluations.

Our study considers nine automated repair tools that implement seven automated repair
techniques (two pairs of tools implement the same technique for different languages). Six of
the techniques repair C programs: GenProg (Weimer et al. 2009; Le Goues et al. 2012a, b),
TrpAutoRepair (Qi et al. 2013), AE (Weimer et al. 2013), Kali (Qi et al. 2015), SPR (Long
and Rinard 2015), and Prophet (Long and Rinard 2016b). Three of the techniques repair Java
programs: Nopol (DeMarco et al. 2014), a Java reimplementation of GenProg (Martinez
et al. 2017), and a Java reimplementation of Kali (Martinez et al. 2017). We use results from
prior evaluations of these techniques on the ManyBugs and Defects4J datasets. GenProg,
TrpAutoRepair, and AE have been applied to all 185 ManyBugs defects (Le Goues et al.
2015). SPR, Prophet, and Kali have each been applied to 105 (a strict subset of the 185)
ManyBugs defects (Long and Rinard 2015, 2016b; Qi et al. 2015). Nopol, and the Java
versions of GenProg and Kali have been applied to 224 Defects4J defects (Martinez et al.
2017).

We identify and compute eleven unique abstract parameters recorded in most bug
tracking systems and source code repositories that relate to five defect characteris-
tics: importance, independence, complexity, test effectiveness, and characteristics of the
developer-written patch. These parameters and characteristics form the basis of our evalu-
ation, comprising the dataset and methodology that creators of new Java and C automated
repair tools can use to evaluate their tools. Our evaluation answers six research questions:

RQ1 Importance: Is an automated repair technique’s ability to produce a patch for a defect
correlated with that defect’s importance?

RQ2 Complexity: Is an automated repair technique’s ability to produce a patch for a defect
correlated with that defect’s complexity?

RQ3 Test effectiveness: Is an automated repair technique’s ability to produce a patch for a
defect correlated with the effectiveness of the test suite used to repair that defect?

RQ4 Independence: Is an automated repair technique’s ability to produce a patch for a
defect correlated with that defect’s dependence on other defects?

RQ5 Characteristics of developer-written patches: What characteristics of the developer-
written patch for a defect are significantly associated with an automated repair
technique’s ability to produce a patch for that defect?

RQ6 Patch quality: What defect characteristics are significantly associated with an
automated repair technique’s ability to produce a high-quality patch for that defect?

We find that:

RA1 Importance: Java repair techniques are moderately more likely to produce patches
for defects of a higher priority, while C repair techniques’ ability to produce a patch
for a defect does not correlate with defect priority. Further, Java and C repair tech-
niques’ ability to produce a patch for a defect has little to no consistent correlation

2904 Empir Software Eng (2018) 23:2901–2947

with the time taken by developer(s) to fix that defect and the number of software
versions affected by that defect. This suggests that automated repair is as likely to
produce a patch for a defect that takes developers a long time to fix as for a defect
that developers fix quickly.

RA2 Complexity: C repair techniques are less likely to produce patches for defects that
required developers to write more lines of code and edit more files to patch. How-
ever, the observed negative correlations are not consistently strong for all techniques,
suggesting that automated repair can still produce patches for some complex defects.
Further, for Java repair techniques, we do not observe a statistically significant
relationship of this kind.

RA3 Test effectiveness: Java repair techniques are less likely to produce patches for defects
with more triggering or more relevant tests, while C repair techniques’ ability to
produce a patch for a defect does not correlate with the number of triggering or
relevant tests. Further, Java and C repair techniques’ ability to produce a patch for a
defect has little to no consistent correlation with the statement coverage of the test
suite used to repair that defect.

RA4 Independence: Java repair techniques’ ability to produce a patch for a defect does not
correlate with that defect’s dependence on other defects. For the C repair techniques,
the data does not provide sufficient diversity to study the relationship between
repairability and defect independence.

RA5 Characteristics of developer-written patches: Java and C repair techniques strug-
gle to produce patches for defects that required developers to insert loops or new
function calls, or change method signatures.

RA6 Patch quality: Only two of the considered repair techniques, Prophet and SPR, pro-
duce a sufficient number of high-quality patches to evaluate. These techniques were
less likely to produce patches for more complex defects, and they were even less
likely to produce correct patches.

The main contributions of this paper are:

– A methodology for identifying eleven abstract parameters that map onto five defect
characteristics for evaluating automated repair applicability.

– The publicly-released, partially manual and partially automated annotation of 409
defects within ManyBugs and Defects4J, two large benchmarks widely used for
evaluation of automated program repair.

– A methodology for evaluating the applicability of automated program repair tech-
niques using the ManyBugs and Defects4J defect annotations to encourage research to
develop techniques that repair more defects that are considered important and difficult
for developers to repair.

– The evaluation of seven automated program repair techniques on 409 ManyBugs and
Defects4J defects, identifying how defect characteristics correlate with the techniques’
ability to produce patches, and high-quality patches.

Our extensions to the ManyBugs and Defects4J benchmarks and the scripts we have
used to automate deriving the data for those benchmarks are available at https://github.com/
LASER-UMASS/AutomatedRepairApplicabilityData/.

The rest of the paper is structured as follows. Section 2 describes the repair techniques
and defect benchmarks we use in our evaluations. Section 3 outlines our experimental
methodology. Section 4 discusses our results and their implications. Section 5 presents the
threats to the validity of our analysis, and Section 6 places our work in the context of related

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/
https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/

Empir Software Eng (2018) 23:2901–2947 2905

research. Finally, Section 7 summarizes our contributions and future research directions
enabled by this work.

2 Subjects of Investigation

The goal of this paper is to evaluate if state-of-the-art automated repair techniques can
generate patches for defects that are important or difficult for developers to fix. This section
details the subjects our study investigated, in terms of the automated repair techniques, real-
world defects, and the corresponding patch information. Section 3 explains the experimental
methodology that uses these subjects.

2.1 Automated Repair Techniques

Our study considers seven state-of-the-art automated repair techniques.
GenProg (Weimer et al. 2009; Le Goues et al. 2012a, b) is a generate-and-validate

repair technique. Such techniques create candidate patches, often using search-based
approaches (Harman 2007), and then validate them, typically through testing. GenProg
uses a genetic programming heuristic (Koza 1992) to search through the space of possi-
ble patches, mutating lines executed by failing test cases, either deleting them, inserting
lines of code from elsewhere in the program, or both to create new potential patches, and
crossover operators to combine patches. GenProg uses the test suite to select the best-fit
patch candidates and continues evolving them until it either finds a patch that passes all
tests, or until a specified timeout. GenProg targets general defects without focusing on a
specific class. GenProg was originally designed for C programs (Weimer et al. 2009; Le
Goues et al. 2012a, b), but has been reimplemented for Java (Martinez et al. 2017). This
paper differentiates these two implementations as GenProgC and GenProgJ.

TrpAutoRepair (Qi et al. 2013) (also published under the name RSRepair in “The
strength of random search on automated program repair” by Yuhua Qi, Xiaoguang Mao,
Yan Lei, Ziying Dai, and Chengsong Wang in the 2014 International Conference on Soft-
ware Engineering; we refer to the original name in this paper) uses random search instead
of GenProg’s genetic programming to traverse the search space of candidate patches for C
programs. It uses heuristics to select the most informative test cases first, and stops run-
ning the suite once a test fails. TrpAutoRepair limits its patches to a single edit. It is more
efficient than GenProg in terms of time and test case evaluations (Qi et al. 2013). Sim-
ilarly to GenProg, TrpAutoRepair targets general defects without focusing on a specific
class.

AE (Weimer et al. 2013) is a deterministic program repair technique that uses heuris-
tic computation of program equivalence to prune the space of possible repairs, selectively
choosing which tests to use to validate intermediate patch candidates. AE uses the same
change operators as GenProg and TrpAutoRepair, but rather than using a genetic or random-
ized search algorithm, AE exhaustively searches through the space of all non-equivalent
k-distance edits. AE targets C programs, and, again, targets general defects without focusing
on a specific class.

Kali (Qi et al. 2015) is a simple generate-and-validate repair technique that only deletes
lines of code. It was originally designed to show that even this simple approach can some-
times produce patches that pass the available tests, but it has been shown that at times,
these patches are of high quality (Qi et al. 2015; Martinez et al. 2017). Kali was originally
designed for C programs (Qi et al. 2015), but has been reimplemented for Java (Martinez

2906 Empir Software Eng (2018) 23:2901–2947

et al. 2017). This paper differentiates these two implementations as KaliC and KaliJ. Kali
targets defects that can be patched strictly by removing functionality.

SPR (staged program repair) (Long and Rinard 2015) is a generate-and-validate repair
technique that uses a set of predefined, parameterized transformation schemas designed
to generate repairs for specific defect classes. SPR targets defects that can be repaired by
inserting or modifying conditional statements, initializing variables, replacing one variable
with another, replacing one invoked function with another, replacing one constant with
another, or inserts a statement from elsewhere in the program. Many of the schemas generate
conditions by first computing constraints over specific variable values needed for a repair
and then synthesizing logical expressions to satisfy those constraints. SPR uses the test
suite to validate the patches, targets C programs, and has been shown to find higher-quality
patches than GenProg (Long and Rinard 2015).

Prophet (Long and Rinard 2016b) explores single-edit potential patches, similarly to
TrpAutoRepair, and SPR’s transformation schemas. It prioritizes the schemas using mod-
els inferred from successful developer-written patches from open-source development. The
class of defects Prophet targets is the same as SPR’s. Prophet targets C programs and has
been shown to find higher-quality patches than GenProgC, AE, SPR, and KaliC (Long and
Rinard 2016b).

Nopol (DeMarco et al. 2014) is a synthesis-based technique that targets repairing con-
ditional statements in Java programs. Using the test cases, Nopol generates Satisfiability
Modulo Theory (SMT) constraints that describe the desired behavior on those test cases and
uses an SMT solver to generate a conditional. Nopol fixes defects such as forgotten null
pointer checks.

2.2 Defect benchmarks

We use two benchmarks of defects for our study, ManyBugs and Defects4J.
The ManyBugs benchmark (Le Goues et al. 2015) consists of 185 defect scenarios,

summarized in the top of Fig. 1. Each scenario consists of a version of source code from one
of nine large, open-source software systems, a set of project tests that fail on that version, a
set of tests that pass on that version, and another version from a later point in the repository
that passes all the tests. These defect properties allow for some defects to actually be features
that modify system behavior. Out of 185 defects in ManyBugs, 29 defects were features and
the remaining 156 defects were bugs. For 122 of the defects, ManyBugs includes accurate
links to the project’s bug tracking system or forums (though 8 of those links are no longer
accessible), describing the defect.

The Defects4J benchmark (Just et al. 2014) consists of 357 defect scenarios, summa-
rized in the bottom of Fig. 1. Similarly to ManyBugs, each scenario includes a version of
source code with a defect, and a version with that defect repaired by a developer. The bench-
mark also includes, for each defect, a developer-written test suite that includes at least one
triggering test. As Section 2.3 describes, 224 of these defects have been used for automated
repair, and so we consider that 224-defect subset. Of these, 205 have links to the project’s
bug tracking system. We found that 4 out of the 224 defects were features and the remaining
220 defects were bugs.

Benchmark Extensions As part of this work, we augmented ManyBugs and Defects4J
with extra information. We annotated every defect with the number of lines of code in the
minimized, developer-written patch, the number of files that patch touches, the number of
relevant test cases (test cases that execute at least one statement in at least one file edited

Empir Software Eng (2018) 23:2901–2947 2907

Fig. 1 Our study uses the ManyBugs and Defects4J benchmarks. The 185 ManyBugs defects come from
nine open-source software systems (Le Goues et al. 2015), and the 357 Defects4J defects come from five
open-source software systems (Just et al. 2014). The Closure defects are excluded from our study because
prior studies have not used them to evaluate automated repair techniques (Martinez et al. 2017)

by the developer-written patch) as well as test cases that trigger the defect and, the test suite
coverage. We have also annotated the 114 ManyBugs and 205 Defects4J defects with links
to their projects’ bug tracking systems or forums with how much time passed between when
the defect was reported and when it was resolved, the priority of the defect, the number of
project versions impacted by the defect, and the number of dependent defects. Section 3.2
will describe in more detail how we collected these data. These annotations enable our
evaluation, and can enable others to evaluate how defect characteristics correlate with the
applicability of their repair techniques. The annotations are available at https://github.com/
LASER-UMASS/AutomatedRepairApplicabilityData/.

2.3 Repairability Information

Both ManyBugs and Defects4J have been used to evaluate automated program repair in the
past (Martinez et al. 2017; Le Goues et al. 2012b, 2015; Long and Rinard 2015, 2016b; Qi
et al. 2015). GenProgC, TrpAutoRepair, and AE have been applied to all 185 ManyBugs
defects (Le Goues et al. 2015). SPR, Prophet, and KaliC have each been applied to a 105-
defect subset of the 185-defect ManyBugs benchmark (Long and Rinard 2015, 2016b; Qi
et al. 2015). Nopol, GenProgJ, and KaliJ have been applied to 224 Defects4J defects (Mar-
tinez et al. 2017). In our evaluation, we use these results for the 409 defects, in terms of
which techniques can produce a patch for which defects. Figure 2 summarizes these results.
Combined, the techniques repair 56% and 49% of C defects from the two sets of C defects
and 21% of the Java defects, denoted by the “

⋃
C” and “

⋃
Java” rows. We believe the differ-

ence in these numbers is due in part to the fact that we study more techniques that target C.
Additionally, the first C-targeting techniques (Weimer et al. 2009) predate the Java-targeting
ones, and the first versions of ManyBugs (Le Goues et al. 2012a) predate the first version of
Defects4J (Just et al. 2014), so researchers have had more time to improve their techniques
for ManyBugs than for Defects4J.

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/
https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/

2908 Empir Software Eng (2018) 23:2901–2947

Fig. 2 The automated repair techniques we consider that have been evaluated on the entire 185-defect Many-
Bugs patched 56% of those C defects; the techniques that have been evaluated on the 105-defect subset of
ManyBugs patched 49% of those C defects; the techniques that have been evaluated on 224-defect Defects4J
patched 21% of those Java defects. The “

⋃
C” and “

⋃
Java” rows give the numbers and ratios of defects for

which at least one of the C- and Java-targeting techniques could generate a patch

Further, research studying the quality of repair has identified, via manual analysis and
judgment, which subset of the defects have correct patches (and which are “plausible but
incorrect”) for GenProgC, TrpAutoRepair, and AE (Qi et al. 2015), SPR, Prophet, and
KaliC (Long and Rinard 2016b), and GenProgJ, Nopol, and KaliJ (Martinez et al. 2017).
We use these data in answering RQ6 on patch quality. Because far fewer of the defects
are automatically repaired correctly than plausibly, we expect the statistical power of these
measurements to be less significant.

3 Methodology

This section explains our data collection procedure and the experimental methodology we
use to answer the research questions posed in Section 1. We first use grounded theory to
identify and classify relevant information available in bug tracking systems, open-source
project hosting platforms, and defect benchmarks (Section 3.1). We use this process to
identify five defect characteristics: defect importance, defect complexity, test effectiveness,
defect independence, and characteristics of the developer-written patch. Our study analyzes
the relationship between repairability— an automated repair technique’s ability to gener-
ate a patch for a given defect — and these five defect characteristics. We further analyze the
relationship between an automated repair technique’s ability to produce correct patches and
each of these characteristics.

Our study of relevant data available in bug tracking systems, open-source project host-
ing platforms, and defect benchmarks is somewhat idealistic. It relies on all data that could
be available from these sources. Of course, in the real world, not all data sources are avail-
able for each bug. For the defects we study (recall Section 2.2), only partial information is
available for some of the defects, e.g., only some of the defects contain links to issues in
bug tracking systems. Section 3.2 describes how we annotated defects of ManyBugs and
Defects4J with the identified defect characteristics.

Empir Software Eng (2018) 23:2901–2947 2909

We describe the methodology here with the assumption that the characteristics are inde-
pendent. In Section 4.8.3, we relax this assumption, present a methodology to check for
correlations and confounding factors among the characteristics, and apply that methodology
to our evaluation.

3.1 Identifying importance and difficulty data

Classifying how difficult a defect is to repair, and how important repairing a defect is to a
project is a complex and subjective task. There is neither a single measure of difficulty nor
of importance. To identify aspects of defects related to difficulty and importance, we first
analyzed eight popular bug tracking systems (softwaretestinghelp.com 2015), three popular
open-source project hosting platforms with bug tracking systems, and two benchmarks of
software defects (that include source code, test suites, and developer-written patches) (Le
Goues et al. 2015; Just et al. 2014).

We used constructivist grounded theory (Bryant and Charmaz 2007) with coding and
constant comparison specifically designed for reasoning about and categorizing concepts
without preconceived abstractions of the involved data (Charmaz 2006). In other words, we
started out without having strong preconceived notions of what data found in bug track-
ing systems, open-source project hosting platforms, and defect benchmarks are likely to
be relevant to defect difficulty and importance, and we used the appropriate grounded
theory for identifying such data and classifying them into abstractions. This methodol-
ogy has been previously recommended for use in information systems research (Matavire
and Brown 2013). Two of the authors, called coders, independently analyzed all concrete
parameters available in the bug tracking systems, open-source project hosting platforms,
and the defect benchmarks (specifically focusing on the test suites and developer-written
patches available in these benchmarks). The coders selected which pieces of data may
be relevant to how difficult or important the defect is to repair. For example, con-
crete parameter priority was associated with the importance of defect while # of lines
in the minimized patch for a defect was associated with difficulty. Coders also identi-
fied other data such as number of triggering and relevant tests available for a defect and
number of project versions affected by a defect that they felt may be interesting to cor-
relate with automated repair techniques’ ability to repair the defect. The two coders then
compared their coding and reconciled the differences. Reconciling sometimes required
looking at example defects to gain a further insight into the semantics of the concrete
parameters.

Next, the coders, again independently, grouped similar concrete parameters (e.g., iden-
tical parameters for which different bug tracking systems use different names, or closely
related concrete parameters) into abstract parameters. For example concrete parameters
such as components, linked entities, affects versions and fix versions were grouped together
to form an abstract parameter versions. Again, the coders reconciled their coding. The
coders iterated between identifying concrete and abstract parameters until their findings
saturated and no more parameters were identified. At the end of analysis, we had created
eleven abstract parameters.

Finally, the coders, again independently, categorized the abstract parameters by grouping
closely related parameters, and then reconciled their coding. We call these categories defect
characteristics. For example, abstract parameters File count, Line Count and Reproducibil-
ity were grouped together to form a defect characteristic Complexity. Similarly abstract
parameters Statement coverage, Triggering test count and Relevant test count were grouped

2910 Empir Software Eng (2018) 23:2901–2947

together to form the defect characteristic Test-Effectiveness. We came up with five such
defect characteristics using eleven abstract parameters.

The eight popular bug tracking systems we used are Bugzilla, JIRA, IBM Rational
ClearQuest, Mantis, Trac, Redmine, HP ALM Quality Center, and FogBugz (softwaretest-
inghelp.com 2015). The three popular open-source project hosting platforms with bug
tracking systems we used are Sourceforge, GitHub, and Google code (although the latter
is no longer active). Finally, the two benchmarks of software defects we used are a 185-C-
defect ManyBugs (Le Goues et al. 2015) and a 357-Java-defect Defects4J (Just et al. 2014)
benchmarks (recall Section 2.2). For completeness and reproducibility of our research, we
include a complete list and description of the concrete parameters we found for each of
the bug tracking systems, project-hosting platforms, and defect benchmarks in Table 1 in
Appendix A. Note that the names of the parameters bug tracking systems use are not always
intuitive, and sometimes inconsistent between systems. For example, Google code uses the
terms “open” and “closed” for timestamps of when an issue was open or closed. GitHub
uses these terms as binary labels. Google code uses the parameter “status” to encode these
labels. We do not include a detailed description of what information each parameter encodes
and how it encodes it in this paper, but this information is available from the underlying bug
tracking systems and project-hosting platforms.

The coders grouped these concrete parameters into eleven abstract parameters, and then,
categorized the abstract parameters into the five defect characteristics. Again, for com-
pleteness and reproducibility, we include the complete mapping of concrete parameters to
abstract parameters, and, in turn, to the defect characteristics in Table 2 in Appendix A.

Sections 3.1.2–3.1.6 describe the five defect characteristics and the eleven abstract
parameters that map onto them. But first, Section 3.1.1 describes the statistical tests we
use to determine whether the abstract parameters correlate with the automated repair
techniques’ ability to produce patches.

3.1.1 Statistical tests

Ten out of the eleven abstract parameters are numerical. For most parameters, the num-
ber of unique values is small and the magnitude of their difference may not be indicative.
Therefore, we rely on nonparametric statistics and do not assume that the underlying values
of a parameter should be interpreted as equidistant from one another. Specifically, for each
technique (including “

⋃
C” and “

⋃
Java,” as described in Section 2.3), for each of the ten

numerical abstract parameters, we split the distribution of that parameter’s values into two
distribution samples: (1) the distribution of the parameter’s values for the defects for which
the technique produces a patch, and (2) the distribution of the parameter’s values for the
defects for which the technique does not produce a patch. We use the nonparametric Mann-
Whitney U test to determine if the two distribution samples are statistically significantly
different. That is, the test computes a p value that indicates whether the null hypothesis
that the two distribution samples are statistically indistinguishable (i.e., they are drawn from
the same distribution) should be rejected. We use the standard convention of p ≤ 0.01
to mean the difference is strongly statistically significant, 0.01 < p ≤ 0.05 to mean the
difference is statistically significant, 0.05 < p ≤ 0.1 to mean the difference is weakly sta-
tistically significant, and p > 0.1 to mean the difference is not statistically significant. We
measure the strength of the association between the abstract parameter and the technique’s
ability to produce a patch using the rank-biserial correlation coefficient, a special case of

Empir Software Eng (2018) 23:2901–2947 2911

Somers’ d. A defect’s repairability with respect to a technique — whether the technique pro-
duces a patch for this defect — is a dichotomous variable, and in such situations, Somers’
d is a recommended measure of the nonparametric effect size for ordinal data; Somers’
d is also asymmetric with the presumed cause and effect variables, which is the case in
our study (Ferguson 2009; Newson 2002). We use the standard mapping from Somers’ d

(which can take on values between −1 and 1) to the adjectives very weak (|d| < 0.1),
weak (0.1 ≤ |d| < 0.2), moderate (0.2 ≤ |d| < 0.3), and strong (0.3 ≤ |d|) (Le
Roy 2009). We further compute the 95% confidence interval for Somers’ d (referred
to as 95% CI). We consider an association to be statistically and practically significant
if it is at least weakly statistically significant and if the 95% confidence interval for
Somers’ d is entirely positive or entirely negative. For the eleventh abstract parameter,
developer-written patch characteristics, we use a logistic regression to fit a model for
repairability and determine which characteristics have the strongest effect on repairability
(Section 3.1.6).

3.1.2 Defect Importance

Our analysis of the eleven issue tracking systems (eight bug trackers and three project-
hosting platforms) identified three common abstract parameters related to importance:
priority, project versions affected, and time to fix the defect.

Priority of the Defect The priority of a defect is included in nine out of the eleven issue
tracking systems. Different issue tracking systems use different ordinal scales to measure
the priority. We mapped these different scales to our own scale that varies from 1 (lowest
priority) to 5 (highest priority). Our study determines if there is a significant association
between priority and repairability using the nonparametric Mann-Whitney U test and mea-
sures the strength of the association using a rank-biserial correlation coefficient Somers’ d.
In other words, as described in Section 3.1.1, we compare the distribution of priorities of
defects patched by an automated repair technique to the distribution of priorities of defects
not patched by an automated repair technique. We use the Mann-Whitney U test to test if
the distributions are statistically significantly different, and we measure the magnitude of
that difference using Somers’ d.

Does the Defect Affect More Than One Project Version? The number of project ver-
sions a defect affects is included in three out of the eleven issue tracking systems. Our study
uses the Mann-Whitney U test to check for a significant association with repairability, and
it measures the strength of the association using Somers’ d.

Time Taken to Fix the Defect The time between when a defect was reported and when it
was resolved is included in eight out of the eleven issue tracking systems. For those systems
that did not have any concrete parameters to indicate the time when defect was resolved, we
approximated it by computing the time between timestamps of when the issue was entered
into an issue tracking system, and the last commit for the issue. Our study determines if there
is a significant association between time to fix and repairability using the Mann-Whitney
U test, and it measures the strength of the association using Somers’ d. Note that time to

2912 Empir Software Eng (2018) 23:2901–2947

fix a defect could be considered as a parameter for importance or difficulty, but based on
our analysis of defects and experience of commits made by developers, associating this
parameter to the importance characteristic seem more accurate.

3.1.3 Defect Complexity

Our study considers two defect complexity measures: number of files edited by the
developer-written patch, and number of non-blank, non-comment lines of code in that patch.
These patches are manually minimized in the Defects4J benchmark to remove all changes
that do not contribute to the patch’s goal (Just et al. 2014), but are not in the ManyBugs
benchmark. We partially minimized the ManyBugs patches by removing all blank and com-
ment lines to reduce the potential bias due to over-approximating the number of files and
lines of code. We employed the diffstat tool to automatically compute the number of
source code lines affected by the partially minimized patches.

Number of Source Files Edited by the Developer-Written Patch A defect that
requires editing multiple source files might be harder to localize and generally more dif-
ficult to repair. Our study investigates the effect of the number of source files edited by a
patch on a defect’s repairability. It determines if there is a significant association between
the number of files edited and repairability using the Mann-Whitney U test. It measures the
strength of the association using Somers’ d.

Number of Non-Blank, Non-Comment Lines of Code in Developer-Written Patch
Our study also investigates if defects with larger developer-written patches, in terms of lines
of code, are more difficult for automated repair techniques to repair. Our study determines
whether the number of lines of code has a significant association with repairability using
the Mann-Whitney U test, and it measures the strength of the association using Somers’ d.

3.1.4 Test Effectiveness

Prior work (Smith et al. 2015) suggests that test effectiveness might have an effect on an
automated repair technique’s ability to generate a patch. Our study identified three param-
eters related to test effectiveness: (1) the fraction of the lines in the files edited by the
developer-written patches that are executed by the test suite, (2) the number of defect-
triggering test cases, and (3) the number of relevant test cases (test cases that execute at least
one line of the developer-written patch). Our study determines, for each parameter, if it has
a significant association with repairability using the Mann-Whitney U test, and it measures
the strength of the association using Somers’ d.

3.1.5 Defect Independence

Our analysis of eleven issue tracking systems identified dependents as a common abstract
parameter related to difficulty: a defect whose repair depends on another issue in the
issue tracking system might be more difficult to repair than a defect that can be repaired
independently. The information about defect dependents is included in five out of the
eleven issue tracking systems. Our study uses the Mann-Whitney U test to check for a
significant association with repairability, and it measures the strength of the association
using Somers’ d.

Empir Software Eng (2018) 23:2901–2947 2913

3.1.6 Developer-Written Patch Characteristics

The ManyBugs benchmark provides annotations for each defect, including characteristics
of its developer-written patch (Le Goues et al. 2015). The nine characteristics describe if
the developer-written patch:

C1 changes one or more data structures or types
C2 changes one or more method signatures
C3 changes one or more arguments to one or more functions
C4 adds one or more function calls
C5 changes one or more conditionals
C6 adds one or more new variables
C7 adds one or more if statements
C8 adds one or more loops
C9 adds one or more new functions

We manually annotated the Defects4J defects using the same characterization of the
developer-written patches.

More than one patch characteristic might apply to a single defect. Our study considers
each patch characteristic as a dichotomous variable and uses a logistic regression to fit a
model for repairability. It furthermore determines the patch characteristics that have the
strongest effect on repairability.

3.2 Characterizing the ManyBugs and Defects4J Data

The defect benchmarks we study (recall Section 2.2), provide partial information for some
of the defects, e.g., only some of the defects contain a link to an issue in the issue tracking
system. This section describes the information we were able to obtain for these defects, to
approximate the idealized methodology described in Section 3.1.

Recall that each defect in the ManyBugs and Defects4J benchmarks corresponds to a
pair of commits in a version control system, but not necessarily to an issue in an issue track-
ing system. For each defect in Defects4J, we tried to manually determine the corresponding
issue in the issue tracking system by cross-referencing the commit logs and commit IDs with
the commit information in the issue tracking system. For ManyBugs, the information about
the issues in the issue tracking system which are associated with a defect was available for
122 out of the 185 defects (though 8 are no longer accessible because either the URL did
not resolve or the issue was private). For Defects4J, this information was available for 205
out of the 224 defects. We annotated each defect with a link to the issue tracking system,
with the abstract parameters recorded in the issue tracking system. The abstract parameters
recorded were obtained from different concrete parameters depending on the issue tracking
system used by a given project. Also, information about some of the abstract parameters
was not found in some of the issue tracking systems. Hence we couldn’t annotate all the
defects with all the abstract parameters. Table 3 in Appendix B shows the details about infor-
mation available for annotating the defects with parameters obtained from issue tracking
systems.

An issue in an issue tracking system might apply to more than one defect: a fault
reported in the issue tracking system might be related to multiple defects. Our study treats
all defects related to the same issue in the issue tracking system as equally important.
Section 5 discusses this experimental design choice and its implications. For the ManyBugs
and Defects4J benchmarks, 312 out of 327 issues are related to exactly one defect.

2914 Empir Software Eng (2018) 23:2901–2947

For the abstract parameters that were obtained from the two defect benchmarks, we were
able to annotate all defects with line count, file count, triggering test count, and relevant test
count as this information was available with the benchmarks. The triggering test count is the
number of negative tests for a defect provided in ManyBugs and number of triggering tests
for a defect provided in Defects4J. The relevant test count in Defects4J is the number of test
cases that execute at least one statement in at least one file edited by the developer-written
patch. These are provided as relevant tests for each defect in Defects4J. ManyBugs provides
all test cases that are relevant for the project, but these may not be specific to patched file(s).
The relevant test count for ManyBugs is the number of all tests relevant for the project.

We annotated each defect in Defects4J with the statement coverage ratio of the test suite
on the file(s) edited by the developer-written patch, using the coverage utility provided by
the Defects4J framework. For ManyBugs, we used the gcov tool to compute this informa-
tion for all the defects except for 52 defects that we could not compile. Figure 16 in Appen-
dix B shows the number of defects that could be annotated with each abstract parameter.

While analyzing the defects in ManyBugs and Defects4J, we found that some of the
defects were actually features. We classified all the defects and found that 29 out of the
185 ManyBugs defects were features while the remaining 156 were bugs, and that 4 out
of the 224 Defects4J defects were features while the remaining 220 were bugs. To make
this classification, we manually analyzed the issue description and discussion in the issue
tracking system (when this information was available) to identify if the issue directly related
to implementing new functionality, extending or enhancing functionality, or conforming to
a standard. For those issues that satisfied that criterion, we then checked if the issue related
to an unexpected output; if it did, we classified it as a bug. We then analyzed the minimized,
developer-written source code changes made to resolve the issue for the issues not already
classified as bugs to verify that the changes were consistent with the issue description and
discussion, leading to the final classification as a feature. For issues without links to an issue
tracking system, we followed the same procedure using the developer-written log messages
and source code changes.

We considered two potential confounding factors that could affect repairability: (1) the
defect type (if the defect relates to a bug report or a feature request), and (2) whether a
defect links to an issue in an issue tracking system. The purpose of this analysis was to
determine if our study needs to control for these factors. We used Fisher’s exact test to
test for independence. Section 4.8.3 details our inter-correlation analyzes for confounding
factors that result from potential correlations between defect characteristics. Figure 3 shows
that the repairability results are not independent of the defect type for ManyBugs, and hence
our study controls for this factor by analyzing bug reports and feature requests separately.
Fisher’s exact test confirmed that there is no significant association between repairability
and whether a defect links to an issue in an issue tracking system (p = 0.64 for ManyBugs;
p = 1.0 for the Defects4J subject Chart, the only subject in Defects4J with some missing
issue links). Therefore, our study does not control for this factor.

Our study uses the complexity of the developer-written patches as a proxy for defect
complexity, instead of inferring complexity from the issue tracking systems for two reasons.
First, a developer-written patch is available for every defect in the ManyBugs and Defects4J
benchmarks — by contrast, only 327 out of 409 defects have a corresponding issue in an
issue tracking system. Second, the defect complexity recorded in an issue tracking system
may be subjective or specific to the project. Note that while a defect might, in theory, have
an unbound number of valid fixes, we assume that the developer-written fix is indicative of
the complexity of the defect it fixes. Section 5 discusses this assumption in greater detail.

Empir Software Eng (2018) 23:2901–2947 2915

ManyBugs
defect type patched unpatched total
bug 105 51 156
feature 14 15 29
column total 119 66 185

Fisher’s exact test: p = 0.05

Defects4J
defect type patched unpatched total
bug 46 174 220
feature 1 3 4
column total 47 177 224

Fisher’s exact test: p = 1.00

Fig. 3 The effect of a defect’s type (bug or feature) on its repairability

4 Results

This section answers the six research questions from Section 1 for the automated repair
techniques and defects from Section 2, using the methodology from Section 3. As we have
already described, we consider the defects classified into bugs and features separately, so
we answer the research questions for these two sets of defects separately.

Sections 4.1–4.6 present results for our six research questions, Section 4.7 comments on
feature synthesis, and Section 4.8 discusses the implications of our results, relates them to
prior findings, and considers confounding factors.

4.1 Defect Importance

RQ1: Is an automated repair techniques ability to produce a patch for a defect correlated
with that defects importance?

We measure a defect’s importance using the defect’s priority value in the project’s issue
tracking system, the number of project versions the defect affects, and the time from when
the defect was reported until it was resolved (recall Section 3).

Priority of the Defect For 156 defects in ManyBugs that were classified as bugs, 23
defects had priority values: 20 have priority two, 1 has priority three, and 2 have priority
five. For 220 defects in Defects4J that were classified as bugs, 187 defects had priority
values: 2 have priority one, 54 have priority two, 117 have priority three, 9 have priority
four, and 5 have priority five. Top of Fig. 4 shows the distribution of the priority values.

Figure 4 shows the results of the Somers’ d and the Mann-Whitney U tests comparing the
priority distributions of defects for which techniques do, and do not produce patches. For
the Java techniques, Somers’ d indicates moderate to strong positive correlations between
priority and repairability. For Nopol and

⋃
Java, the Mann-Whitney U test indicates a statis-

tically significant difference between the distributions (p ≤ 0.05) and the Somers’ d 95%
confidence interval is entirely positive. While we observed a weakly significant, moderate
positive correlation (p ≤ 0.1) for GenProgJ and KaliJ, our confounding factor analysis
(Section 4.8.3) suggests that this observation was due to a correlation between the priority
and the number of relevant test cases.

2916 Empir Software Eng (2018) 23:2901–2947

Priority distribution
ManyBugs (23 defects) Defects4J (187 defects)

0
1

2
3

4
5

pr
io

rit
y

0 5 10 15 20

0
1

2
3

4
5

pr
io

rit
y

0 30 60 90 120 150 180

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 100 [0 299, 0 499] 0 856 5 18
TrpAutoRepair 0 167 [0 147, 0 480] 0 348 9 14
AE 0 176 [0 341, 0 012] 0 539 6 17

C 0 114 [0 165, 0 392] 0 342 11 12

ManyBugs (105-defect subset)
SPR 0 111 [0 541, 0 319] 0 753 9 5
KaliC 0 111 [0 541, 0 319] 0 753 9 5
Prophet 0 222 [0 472, 0 027] 0 505 5 9

C 0 175 [0 679, 0 329] 0 780 10 4

Defects4J
GenProgJ 0 206 [0 037, 0 449] 0 088 20 167
Nopol 0 307 [0 133, 0 481] 0 002 28 159
KaliJ 0 223 [0 023, 0 468] 0 080 16 171

Java 0 216 [0 065, 0 367] 0 017 37 150

Fig. 4 Priority data are available for 23 ManyBugs and 187 Defects4J defects classified as bugs. Java repair
techniques are more likely to produce a patch for defects with a higher priority. Insufficient data for C defects
prevent a statistically significant conclusion. The 95% CI (confidence interval) column shows the range in
which Somers’ d lies with a 95% confidence. Rows for which both the Mann-Whitney U test produces a p

value below 0.05 and the 95% CI does not span zero are bold. The data shown are only for defects classified
as bugs and with known priority values

For C techniques, we observe weak to moderate, both positive and negative correlations.
Because relatively few (23) of the C defects have priority values, the Mann-Whitney U test
does not find any statistically significant differences between the priority distributions of
defects for which techniques do, and do not produce patches. Therefore we make no claims
about a correlation between priority and C techniques’ ability to produce patches.

Does the Defect Affect more than one Project Version? For 156 defects in ManyBugs
that were classified as bugs, 101 defects had information on how many versions they affect.
Of these, 91 affected a single version, 5 affected two versions, 1 affected 3 versions, 3
affected four versions, and 1 affected eight versions. For 220 defects in Defects4J that were
classified as bugs, 165 defects had this information. Of these, 50 affected a single version,
103 affected two versions, 5 affected three versions, 4 affected four versions, and 3 affected
five versions. Top of Fig. 5 shows the distribution of the versions values.

Empir Software Eng (2018) 23:2901–2947 2917

Figure 5 shows the results of the Somers’ d and the Mann-Whitney U tests on the ver-
sions distributions of defects for which techniques do, and do not produce patches. We found
no evidence of a relationship between a defect’s repairability and the number of versions
it depends on except for GenProgC and AE, which showed a significant (p ≤ 0.05) and
weakly significant (p ≤ 0.1), respectively, negative correlation with the number of versions
affected by a defect. For all other techniques, the results were insignificant (p > 0.1 or the
95% confidence interval spanned zero). We conclude that the number of versions affected
by a defect likely has negligible effect on automated repair’s effectiveness producing a patch
for that defect.

Time Taken to Fix the Defect For 156 defects in ManyBugs that were classified as bugs,
95 defects had information about the time frame that passed between when the defect was
reported and when it was resolved. This time to fix the defect varied from 43 minutes to 10.7

Versions distribution
ManyBugs (101 defects) Defects4J (165 defects)

0
2

4
6

8
ve

rs
io

ns

0 20 40 60 80 100

0
1

2
3

4
5

ve
rs

io
ns

0 40 80 120 160

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 143 [0 250, 0 037] 0 017 47 54
TrpAutoRepair 0 095 [0 215, 0 025] 0 134 54 47
AE 0 113 [0 225, 0 001] 0

0051]
078 49 52

C 0 075 [0 201, 0 262 59 42

ManyBugs (105-defect subset)
SPR 0 120 [0 366, 0 126] 0 338 25 17
KaliC 0 021 [0 205, 0 246] 0 882 23 19
Prophet 0 003 [0 250, 0 255] 1 000 12 30

C 0 029 [0 266, 0 209] 0 965 26 16

Defects4J
GenProgJ 0 022 [0 208, 0 252] 0 871 18 147
Nopol 0 175 [0 009, 0 358] 0 096 27 138
KaliJ 0 032 [0 264, 0 199] 0 852 14 151

Java 0 105 [0 071, 0 282] 0 267 35 130

Fig. 5 Versions data are available for 101 ManyBugs and 165 Defects4J defects classified as bugs. Number
of versions affected by a defect likely has little effect on automated repair’s effectiveness producing a patch
for that defect. The 95% CI (confidence interval) column shows the range in which Somers’ d lies with a
95% confidence. Rows for which both the Mann-Whitney U test produces a p value below 0.05 and the 95%
CI does not span zero are bold. The data shown are only for those defects classified as bugs and with known
versions values

2918 Empir Software Eng (2018) 23:2901–2947

years. Out of these 95 defects, 48 have time to fix of less than one month, 32 from one month
to one year, and 15 greater than one year. For 220 defects in Defects4J that were classified
as bugs, 199 had this information. The time to fix varied from 1 minute 21 seconds to 4.0
years. Out of 220 defects, 140 have time to fix of less than one month, 42 from one month
to one year, and 17 greater than one year. The defects with a low time to fix may exemplify
a source of potential noise in our data. While it is rare for the developer(s) to repair a defect
in a minute and a half, they will sometimes discover a defect, think about the correct way
to repair it, and even write relevant code before reporting the defect to the issue tracking
system. In such cases, our methodology for measuring the time to fix will not capture the
time the developer(s) spent thinking about the defect prior to reporting it. Unfortunately,
this time is not recorded in the various surviving artifacts. However, this situation most
likely pertains only to defects that the developer(s) fix quickly, thus correctly capturing the
rank of the defects’ time to fix measure. Top of Fig. 6 shows the distribution of the time
to fix values.

Time to fix distribution
ManyBugs (95 defects) Defects4J (199 defects)

0
10

00
20

00
30

00
da

ys

0 20 40 60 80

0
20

0
60

0
10

00
14

00
da

ys

0 30 60 90 120 150 180

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 231 [0 459, 0 003] 0 053 45 50
TrpAutoRepair 0 067 [0 304, 0 170] 0 576 51 44
AE 0 128 [0 360, 0 105] 0 287 45 50

C 0 112 [0 349, 0 126] 0 357 55 40

ManyBugs (105-defect subset)
SPR 0 175 [0 552, 0 202] 0 382 20 16
KaliC 0 152 [0 532, 0 229] 0 447 19 17
Prophet 0 095 [0 524, 0 335] 0 688 9 27

C 0 130 [0 513, 0 253] 0 521 21 15

Defects4J
GenProgJ 0 294 [0 590, 0 002] 0 024 22 177
Nopol 0 173 [0 390, 0 043] 0 137 29 170
KaliJ 0 131 [0 381, 0 119] 0 364 18 181

Java 0 226 [0 411, 0 040] 0 029 39 160

Fig. 6 Time to fix data are available for 95 ManyBugs and 199 Defects4J defects classified as bugs. Time
taken by developer(s) to fix a defect likely has little effect on automated repair’s effectiveness producing a
patch for that defect. The 95% CI (confidence interval) column shows the range in which Somers’ d lies with
a 95% confidence. Rows for which both the Mann-Whitney U test produces a p value below 0.05 and the
95% CI does not span zero are bold. The data shown are only for those defects classified as bugs and with
known time to fix values

Empir Software Eng (2018) 23:2901–2947 2919

Figure 6 shows the results of the Somers’ d and the Mann-Whitney U tests on the time
taken to fix distributions of defects for which techniques do, and do not produce patches.
For every technique, Somers’ d indicates a negative correlation: the longer it took for devel-
opers to repair a defect, the harder it is for automated repair techniques to produce a patch.
However, these results are not statistically significant as indicated by the Mann-Whitney U
test, except for GenProgC (p ≤ 0.1) and GenProgJ (p ≤ 0.05). For all other techniques,
p > 0.1. We conclude that the time taken by the developer(s) to fix a defect likely has little
effect on automated repair’s effectiveness producing a patch for that defect.

These results indicate that Java automated repair techniques are moderately more
likely to produce patches for defects of a higher priority, while C techniques do
not correlate with defect priority. The time taken by the developer(s) to fix a defect
and number of software versions affected by the defect had little to no correlation
with the ability to produce a patch. Overall, there is evidence that automated repair
is as likely to repair more important defects, as it is to repair less important ones,
which is an encouraging finding.

4.2 Defect Complexity

RQ2: Is an automated repair techniques ability to produce a patch for a defect correlated
with that defects complexity?

We measure a defect’s complexity using two parameters, the number of files containing
non-comment, non-blank-line edits in the developer-written fix, and the total number of
non-comment, non-blank lines of code in the developer-written fix (recall Section 3).

Number of Source Files Edited by the Developer-Written Patch The information
on the number of files edited by the developer patch was available for all 185 defects in
ManyBugs. The number of files varied from 1 to 11. The distribution of the 156 ManyBugs
defects that were classified as bugs also varied from 1 to 11: 133 edited a single file, 10 two
files, 7 three files, 2 four files, 1 five files, 2 eight files, and 1 eleven files. For Defects4J
too, all 224 defects had this information. The number of files varied from 1 to 7. Of the 220
defects classified as bugs, 205 edited a single file, 12 two files, 1 three files, 1 four files,
and 1 seven files. Top of Fig. 7 shows the distribution of the number of files edited values.

For C techniques, Somers’ d showed a weak to moderate negative correlation between
the number of files the developer-written patch edited, and the techniques’ ability to pro-
duce a patch (Fig. 7). The Mann-Whitney U test showed this relationship to be statistically
significant (p ≤ 0.05) for all C techniques. The correlation was also negative for Java
repair techniques, although this relationship was very weak and statistically insignificant
(p > 0.1). We suspect the relatively weaker correlation for Java programs is due to the
lower variability in Defects4J in the number of files edited by the developer patch.

Number of Non-Blank, Non-Comment Lines of Code in Developer-Written Patch
For the 185 ManyBugs defects, the number of non-comment, non-blank lines in the
developer-written patches varied from 1 to 1,887. In the subset of ManyBugs consisting
of 156 bugs, the number varied from 1 to 1,341. For Defects4J, for both the 224 defects
and the subset consisting of 220 bugs, the number of non-comment, non-blank lines in the
developer-written patches varied from 1 to 49. Top of Fig. 8 shows the distribution of the
number of lines edited values.

2920 Empir Software Eng (2018) 23:2901–2947

File count distribution
ManyBugs (156 defects) Defects4J (220 defects)

0
2

4
6

8
10

fil
e

co
un

t

0 30 60 90 120 150
0

1

2

3

4

5

6

7

F
ile

C
ou

nt

0 40 80 120 160 200

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 134 [0 241, 0 026] 0 016 75 81
TrpAutoRepair 0 117 [0 231, 0 002] 0 042 84 72
AE 0 134 [0 241, 0 026] 0 016 75 81

C 0 147 [0 268, 0 025] 0 011 91 65

ManyBugs (105-defect subset)
SPR 0 256 [0 407, 0 105] 0 002 41 43
KaliC 0 191 [0 343, 0 039] 0 028 39 45
Prophet 0 186 [0 297, 0 075] 0 062 22 62

C 0 233 [0 396, 0 070] 0 007 44 40

Defects4J
GenProgJ 0 067 [0 090, 0 045] 0 232 27 193
Nopol 0 035 [0 098, 0 027] 0 521 34 186
KaliJ 0 066 [0 085, 0 047] 0 372 22 198

Java 0 047 [0 100, 0 005] 0 298 46 174

Fig. 7 Number of files in the developer-written patch data are available for all 156 ManyBugs and 220
Defects4J defects classified as bugs. Automated program repair is less likely to produce patches for defects
whose developer-written patches edit more files. This result is strongly statistically significant for C repair
techniques, but is statistically insignificant for Java repair techniques. The 95% CI (confidence interval)
column shows the range in which Somers’ d lies with a 95% confidence. Rows for which both the Mann-
Whitney U test produces a p value below 0.05 and the 95% CI does not span zero are bold. The data shown
are only for those defects classified as bugs

For C techniques, Somers’ d showed a weak to strong negative correlation: the larger the
developer-written patch, the less likely automated repair is to produce a patch. The Mann-
Whitney U test showed this relationship to be significant (p ≤ 0.05) for all C techniques
(see Fig. 8). For Java techniques, the results were insignificant (p > 0.1 or the 95% confi-
dence interval spanned zero). Thus, we cannot conclude that the number of non-comment,
non-blank lines in the developer-written patches is significantly associated with repairability
for Java techniques.

These results indicate that C repair techniques are less likely to produce patches
for defects that required developers to write more lines of code and edit more files
to patch. This suggests that automated repair is more likely to patch easy defects
than hard ones, reducing its utility. However, the correlation is not strong for all
the techniques meaning that automated repair could still produce patches for some
hard-to-repair-manually defects.

Empir Software Eng (2018) 23:2901–2947 2921

Line count distribution
ManyBugs (156 defects) Defects4J (220 defects)

0
20

0
40

0
60

0
80

0
12

00
lin

e
co

un
t

0 30 60 90 120 150

0
10

20
30

40
50

Li
ne

C
ou

nt

0 40 80 120 160 200

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 228 [0 403, 0 054] 0 013 75 81
TrpAutoRepair 0 182 [0 359, 0 005] 0 049 84 72
AE 0 221 [0 396, 0 046] 0 016 75 81

C 0 249 [0 426, 0 072] 0 008 91 65

ManyBugs (105-defect subset)
SPR 0 405 [0 625, 0 185] 0 001 41 43
KaliC 0 342 [0 569, 0 115] 0 006 39 45
Prophet 0 363 [0 624, 0 102] 0 011 22 62

C 0 388 [0 614, 0 161] 0 002 44 40

Defects4J
GenProgJ 0 083 [0 318, 0 152] 0 485 27 193
Nopol 0 209 [0 018, 0 437] 0 050 34 186
KaliJ 0 072 [0 315, 0 170] 0 578 22 198

Java 0 060 [0 128, 0 247] 0 533 46 174

Fig. 8 The number of non-comment, non-blank lines of files in the developer-written patch data are available
for all 185 ManyBugs and 220 Defects4J defects classified as bugs. This number is strongly correlated with
automated repair techniques’ ability to produce patches. This result is strongly statistically significant for C
repair techniques and Nopol. The 95% CI (confidence interval) column shows the range in which Somers’ d

lies with a 95% confidence. Rows for which both the Mann-Whitney U test produces a p value below 0.05
and the 95% CI does not span zero are bold. The data shown are only for those defects classified as bugs

4.3 Test Effectiveness

RQ3: Is an automated repair techniques ability to produce a patch for a defect correlated
with the effectiveness of the test suite used to repair that defect?

We measure a test suite’s quality using three parameters, statement coverage, the number of
defect-triggering test cases, and the number of relevant test cases (recall Section 3).

The Fraction of the Lines in the Files Edited by the Developer-Written Patches
that are Executed by the Test Suite. For ManyBugs, we were able to compute test
suite statement coverage for 113 out of 156 defects classified as bugs. This measure — the
fraction of the lines in the files edited by the developer-written patches that are executed by
the test suite — varied from 1.6% to 99.4% uniformly across the 113 defects. For Defects4J,
we were able to compute test suite statement coverage for all 220 defects classified as bugs.
The fraction varied from 7.9% to 100%; for 214 out of 220 defects, the fraction was above

2922 Empir Software Eng (2018) 23:2901–2947

50%, for 5 defects, the fraction was between 30% and 50%, and for 1 defect, the fraction
was 7.9%. Top of Fig. 9 shows the distribution of test suite statement coverage values.

For C and Java techniques, the results were insignificant. Somers’ d showed a very weak
to weak correlation between the coverage of the test suite used to repair the defect and the
automated repair’s ability to produce a patch for that defect (Fig. 9); the 95% confidence
interval for Somers’ d consistently spanned zero and the Mann-Whitney U test showed that
the differences between the distributions are not statistically significant (p > 0.1 for all
techniques).

The Number of Defect-Triggering Test Cases For ManyBugs, all 156 defects classified
as bugs had information on the number of test cases that trigger the defect. This number of
tests varied from 1 to 52. Of these 156 defects, 111 had only a single triggering test case. For
Defects4J, all 220 defects had this information, varying from 1 to 28. Of the 220 defects,

Test suite statement coverage distribution
ManyBugs (113 defects) Defects4J (220 defects)

0
20

40
60

80
10

0
st

at
em

en
t c

ov
er

ag
e

0 15 30 45 60 75 90 105

0
20

40
60

80
10

0
st

at
em

en
t c

ov
er

ag
e

0 40 80 120 160 200

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 094 [0 312, 0 124] 0 390 55 58
TrpAutoRepair 0 088 [0 304, 0 127] 0 421 60 53
AE 0 159 [0 374, 0 057] 0 146 57 56

C 0 166 [0 378, 0 046] 0 134 66 47

ManyBugs (105-defect subset)
SPR 0 073 [0 365, 0 219] 0 640 34 25
KaliC 0 090 [0 383, 0 203] 0 558 32 27
Prophet 0 109 [0 484, 0 266] 0 538 15 44

C 0 094 [0 387, 0 198] 0 550 36 23

Defects4J
GenProgJ 0 097 [0 354, 0 160] 0 416 27 193
Nopol 0 064 [0 278, 0 149] 0 555 34 186
KaliJ 0 158 [0 468, 0 152] 0 226 22 198

Java 0 011 [0 204, 0 181] 0 907 46 174

Fig. 9 The statement coverage of the test suite are available for 113 ManyBugs and 220 Defects4J defects
classified as bugs. There is a weak, statistically insignificant, negative correlation for all techniques, between
the coverage of the test suite used to repair the defect, and the technique’s ability to produce a patch for the
defect. The 95% CI (confidence interval) column shows the range in which Somers’ d lies with a 95% con-
fidence. The data shown are only for those defects classified as bugs for which we could compute coverage
information

Empir Software Eng (2018) 23:2901–2947 2923

152 had only a single triggering test. Top of Fig. 10 shows the distribution of triggering test
counts.

For C techniques, the results were insignificant (p > 0.1 or the 95% confidence interval
spanned zero). For Java techniques, Somers’ d showed a weak to moderate negative correla-
tion between the number of triggering test cases and the ability to produce a patch (Fig. 10).
The Mann-Whitney U test indicated this result to be statistically significant (p ≤ 0.05)
for all Java techniques except KaliJ, for which p ≤ 0.1. We conclude that the number of
triggering tests negatively affects a Java technique’s ability to produce a patch.

The Number of Relevant Test Cases (Test Cases that Execute at Least one Line of
the Developer-Written Patch) For ManyBugs, we annotated the same 156 defects with
the total number of positive and negative test cases provided for each defect in ManyBugs
benchmark. The number of relevant test cases varied from 3 to 7,951. For Defects4J, we

Triggering test case distribution
ManyBugs (156 defects) Defects4J (220 defects)

0
10

20
30

40
50

tr
ig

ge
rin

g
te

st
 c

ou
nt

0 30 60 90 120 150

0
5

10
15

20
25

tr
ig

ge
rin

g
te

st
 c

ou
nt

0 40 80 120 160 200

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 098 [0 047, 0 243] 0 187 75 81
TrpAutoRepair 0 137 [0 004, 0 278] 0 065 84 72
AE 0 067 [0 079, 0 212] 0 370 75 81

C 0 087 [0 056, 0 229] 0 249 91 65

ManyBugs (105-defect subset)
SPR 0 018 [0 182, 0 217] 0 866 41 43
KaliC 0 013 [0 212, 0 186] 0 905 39 45
Prophet 0 063 [0 266, 0 140] 0 589 22 62

C 0 025 [0 225, 0 175] 0 810 44 40

Defects4J
GenProgJ 0 231 [0 348, 0 113] 0 017 27 193
Nopol 0 221 [0 337, 0 104] 0 012 34 186
KaliJ 0 177 [0 342, 0 013] 0 095 22 198

Java 0 252 [0 348, 0 156] 0 001 46 174

Fig. 10 The number of triggering test cases is available for all 156 ManyBugs and 220 Defects4J defects
classified as bugs. There is a negative correlation between a defect’s number of triggering test cases and the
ability to produce a patch, but this relationship is only statistically significant for the Java repair techniques.
The 95% CI (confidence interval) column shows the range in which Somers’ d lies with a 95% confidence.
Rows for which both the Mann-Whitney U test produces a p value below 0.05 and the 95% CI does not span
zero are bolf. The data shown are only for those defects classified as bugs

2924 Empir Software Eng (2018) 23:2901–2947

annotated the 220 defects with the number of relevant tests provided for each defect in
Defects4J benchmark and the number of relevant test cases varied from 1 to 4011. Top of
Fig. 11 shows the distribution of relevant test counts.

For C techniques, Somers’ d showed a very weak positive correlation for TrpAutoRepair.
The Mann-Whitney U test indicated this result to be statistically significant (p ≤ 0.05).
However, our confounding factor analysis (Section 4.8.3) found that this correlation was due
to a correlation between the number of relevant test cases and the number of files edited by
the developer-written patch. For all other C techniques, the results were insignificant (p >

0.1 or the 95% confidence interval spanned zero). For Java techniques, Somers’ d showed
a moderate to strong negative correlation between the number of relevant test cases and
the ability to produce a patch for all techniques (Fig. 11). The correlation was statistically
significant (p ≤ 0.05) for Nopol and for

⋃
Java and weakly statistically significant (p ≤

0.1) for GenProgJ and KaliJ.

Relevant test case distribution
ManyBugs (156 defects) Defects4J (220 defects)

0
20

00
40

00
60

00
re

le
va

nt
 te

st
 c

ou
nt

0 30 60 90 120 150

0
10

00
20

00
30

00
40

00
re

le
va

nt
 te

st
 c

ou
nt

0 40 80 120 160 200

ManyBugs
technique Somers’ d 95% CI p patched unpatched
GenProgC 0 166 [0 017, 0 349] 0 074 75 81
TrpAutoRepair 0 188 [0 008, 0 368] 0 043 84 72
AE 0 122 [0 062, 0 307] 0 188 75 81

C 0 134 [0 048, 0 316] 0 154 91 65

ManyBugs (105-defect subset)
SPR 0 087 [0 162, 0 335] 0 497 41 43
KaliC 0 085 [0 164, 0 334] 0 507 39 45
Prophet 0 096 [0 396, 0 204] 0 509 22 62

C 0 050 [0 199, 0 299] 0 697 44 40

Defects4J
GenProgJ 0 204 [0 432, 0 024] 0 086 27 193
Nopol 0 317 [0 549, 0 084] 0 003 34 186
KaliJ 0 223 [0 505, 0 059] 0 087 22 198

Java 0 313 [0 500, 0 125] 0 001 46 174

Fig. 11 The number of relevant test cases is available for all 156 ManyBugs and 220 Defects4J defects
classified as bugs. For Java repair techniques, there is a weak to moderate significant negative correlation
between a defect’s number of relevant test cases and the ability to produce a patch. For C repair techniques,
the correlation is weakly positive. These correlations are statistically significant for a subset of techniques.
The 95% CI (confidence interval) column shows the range in which Somers’ d lies with a 95% confidence.
Rows for which both the Mann-Whitney U test produces a p value below 0.05 and the 95% CI does not span
zero are bold. The data shown are only for those defects classified as bugs

Empir Software Eng (2018) 23:2901–2947 2925

These results indicate that Java repair techniques are less likely to produce patches
for defects with more triggering or more relevant tests. Test suite coverage does
not significantly correlate with the ability to produce a patch. These findings are
concerning, as they show it is harder to produce patches in situations that prior
work has shown to lead to higher-quality patches (Smith et al. 2015).

4.4 Defect Independence

RQ4: Is an automated repair techniques ability to produce a patch for a defect correlated
with that defects dependence on other defects?

Our dataset turned out to be insufficient to draw conclusions on a relationship between
independence and repairability. For ManyBugs, 76 out of 156 defects classified as bugs had
information on how many other defects they depended on, but none of them depended on
other defects. For Defects4J, 165 out of 220 defects classified as bugs had this information.
Of these, 136 did not depend on other defects, 26 depended on a one other defect, 1 on two
other defects, and 2 on three other defects.

For C techniques, the lack of variability in the benchmark defects with respect to defect
independence prevented us from drawing any conclusions. For Java techniques, the results
were insignificant (p > 0.1 or the 95% confidence interval spanned zero), as Fig. 12
shows. This suggests that the number of other defects a defect depends on does not affect
repairability of Java repair techniques.

Dependents distribution
Defects4J (165 defects)

0
1

2
3

4
5

6
de

pe
nd

en
ts

0 30 60 90 120 150

Defects4J
technique Somers’ d 95% CI p patched unpatched
GenProgJ 0 075 [0 233, 0 083] 0 494 18 147
Nopol 0 058 [0 114, 0 230] 0 501 27 138
KaliJ 0 039 [0 230, 0 153] 0 767 14 151

Java 0 032 [0 117, 0 181] 0 725 35 130

Fig. 12 For Java repair techniques, there is a weak statistically insignificant correlation between a defect’s
dependence on other defects and the ability to produce a patch. The 95% CI (confidence interval) column
shows the range in which Somers’ d lies with a 95% confidence. The data shown are only for those defects
classified as bugs

2926 Empir Software Eng (2018) 23:2901–2947

While we have developed a methodology that can be applied to other defect bench-
marks, ManyBugs did not contain enough variability in defect independence to
identify a relationship between independence and repairability. For Defects4J, an
insignificant correlation is observed for all the techniques.

4.5 Developer-Written Patch Characteristics

RQ5: What characteristics of the developer-written patch for a defect are significantly
associated with an automated repair techniques ability to produce a patch for that defect?

Investigating which characteristics of the developer-written patches are significantly
associated with defect repairability allows us to reason about automated repair’s ability to
fix defects in terms of what the developers did. This may, in turn, lead to actionable advice
about which kinds of defects the developer(s) should fix manually, and which can be trusted
to automated repair. Of course, to use this information, the developer(s) must have a sense
of the characteristics of the patch before it is written, which may sometimes be possible.
However, the main goal of studying this research question is to help guide future research
into automated program repair techniques by identifying the characteristics of the defects,
in terms of the patches that repair them, that existing techniques struggle to produce patches
for. Research into future repair tools may, for example, target modifying or inserting loops,
just as, for example, Nopol targets conditional statements.

Figure 13 shows the distributions of the nine patch characteristics for the two bench-
marks, and the results of a logistic regression using these characteristics. For each repair
technique, Fig. 13 shows which patch characteristics are significantly associated with
repairability and how much variance in repairability is explained by all defect characteris-
tics.

The data suggest that some characteristics of developer-written patches are significantly
associated with repairability for C repair techniques, but not for Java repair techniques. In
particular, for C repair techniques, changing a data structure or type, a function argument, or
a conditional, or adding a new variable, an if statement, or a new function are significantly
associated with repairability, whereas changing a method signature, or adding a function
call, or a loop is not.

These results suggest that defects that required developers to insert a loop or a new
function call, or change a method signature are challenging for automated repair
techniques to patch. More patch characteristics are significantly associated with
repairability for C repair techniques than for Java repair techniques.

4.6 Patch Quality

RQ6: What defect characteristics are significantly associated with an automated repair
techniques ability to produce a high-quality patch for that defect?

Recent work has begun evaluating the quality of patches produced by automated repair
(Brun et al. 2013; Smith et al. 2015; Qi et al. 2015; Martinez et al. 2017; Durieux et al.
2015; Long and Rinard 2015, 2016b; Pei et al. 2014). Until now, our analysis remained qual-
ity agnostic, focusing on whether techniques can produce patches, as opposed to whether

Empir Software Eng (2018) 23:2901–2947 2927

Distributions of the nine characteristics of the developer-written patches
Defects4J (220 defects)ManyBugs (156 defects)

 0

 25

 50

 75

 100

 125

 150

C1 C2 C3 C4 C5 C6 C7 C8 C9

nu
m

be
r

of
 d

ef
ec

ts

patch characteristic

Defect not patched
Defect patched

 0

 25

 50

 75

 100

 125

 150

C1 C2 C3 C4 C5 C6 C7 C8 C9

nu
m

be
r

of
 d

ef
ec

ts

patch characteristic

Defect not patched
Defect patched

technique
model quality patch characteristic
p R2 characteristic # p

GenProgC 0 001 0 129

C3 0 036
C4 0 088
C5 0 066
C7 0 055
C9 0 051

TrpAutoRepair 0 005 0 109

C3 0 058
C6 0 046
C7 0 040
C9 0 049

AE 0 042 0 081
C2 0 057
C7 0 068

SPR 0 001 0 184
C1 0 059
C3 0 014

Prophet 0 004 0 169 C3 0 003
KaliC 0 213 0 100 C3 0 088

C 0 000 0 162
C3 0 001
C7 0 075
C9 0 030

GenProgJ 0 555 0 047
C1 0 057
C5 0 029

Nopol 0 572 0 040 none
KaliJ 0 543 0 055 C1 0 031

Java 0 395 0 041 C1 0 039

Fig. 13 The distribution of the nine patch characteristics for the developer-written patches in the ManyBugs
and Defects4J benchmarks. A logistic regression reports that characteristics C1, C3, C5, C6, C7 and C9 —
changing a data structure or type, a function argument, or a conditional, or adding a new variable, an if
statement or a new function — are significantly associated with repairability. Data for which the p value is
below 0.05 are bold

techniques can produce high-quality patches. Quality and applicability are orthogonal
aspects of program repair: one can work on improving the quality of the produced patches,
the applicability of the repair techniques to a wider range of defects, or both. However,
it is important to also study how the two interact. At the present time, the quality of the
patches produced by most techniques is fairly low. According to a manual analysis, on the
105-defect subset of ManyBugs, GenProgC could only produce 2 correct patches, TrpAu-
toRepair 3 correct patches, and AE 2 correct patches (Qi et al. 2015). On an 84-defect subset

2928 Empir Software Eng (2018) 23:2901–2947

of Defects4J, GenProgJ could only produce 5 correct patches, Nopol 5 correct patches, and
KaliJ 1 correct patch (Martinez et al. 2017). The number of correct patches is too small
for us to make statistically significant claims for these techniques. Inspired by the find-
ings of the low quality of repairs, SPR and Prophet were designed to specifically improve
repair quality. SPR produces 13 and Prophet 15 correct patches on the 105-defect subset of
ManyBugs (Long and Rinard 2016b). Other techniques that claim to produce high-quality
patches, e.g., SearchRepair (Ke et al. 2015), fail to scale to the size and complexity of real-
world defects we consider. We use the SPR and Prophet data to begin studying the defect
characteristics’ effect on the ability to produce high-quality repairs. There are eight abstract
parameters that have sufficient data to perform such analysis. Figure 14 shows the Somers’
d and Mann-whitney U test results testing for an association between each of these eight
abstract parameters and the ability to produce high-quality patches. Only the abstract param-
eters related to defect complexity and test suite effectiveness exhibit statistically significant
associations.

Defect Complexity For Prophet, the number of non-comment, non-blank lines in the
developer-written patch correlated negatively with the ability to produce a correct patch.
This negative correlation was stronger compared to the negative correlation with the ability
to produce a patch at all (d = −0.564 for correct patches, vs. d = −0.342 for all patches).
For SPR, the correlations with the ability to produce a correct patch and a patch all were
the same (d = −0.405). The Mann-Whitney U test confirmed this distribution difference to
be statistically significant (p ≤ 0.05) for both the techniques. However, for SPR, the 95%
confidence interval for Somers’ d spans zero for producing correct patches.

For Prophet, there was a weakly significant (p ≤ 0.1) negative correlation between the
number of files edited by the developer-written patch and the ability to produce a correct
patch. For SPR, the correlation was insignificant.

Test Suite Effectiveness SPR showed a weakly significant (p < 0.1) positive correlation
for producing correct patches when using higher-coverage test suites (d = 0.312 for correct
patches, vs. d = −0.073 for all patches). This is consistent with prior results showing that
higher-coverage test suites lead to higher-quality patches (Smith et al. 2015). The result for
Prophet was not statistically significant (p > 0.1). Also, correlations with the number of
triggering tests and relevant tests were either the same for the correct patches as all patches,
or not statistically significant.

Developer-Written Patch Characteristics A logistic regression using the nine patch
characteristics showed that characteristics C1 and C3 associated with SPR’s ability to pro-
duce patches, and characteristic C3 associated with Prophet’s ability to produce patches
(recall Fig. 13). A logistic regression of correct patches generated by SPR and Prophet iden-
tified the same characteristics associating with producing correct patches, and also identified
C7 (patch adds an if statement) as statistically significantly associating with producing cor-
rect patches (SPR p = 0.044, Prophet p = 0.086). Both SPR and Prophet target defects that
can be repaired by inserting or modifying conditional statements, explaining the observation
that adding if statements associates with producing correct patches.

None of the statistical tests revealed statistically significant results for the correct patches
for the defect importance and defect independence characteristics.

Empir Software Eng (2018) 23:2901–2947 2929

Only two of the considered repair techniques, Prophet and SPR, produce a suffi-
cient number of high-quality patches to evaluate. These techniques were less likely
to produce patches for more complex defects, and they were even less likely to
produce correct patches.

4.7 Feature Synthesis

We wanted to conduct the same statistical tests to measure correlation between defect char-
acteristics with the ability to synthesize features using those defects in our benchmarks that
are features, not bugs. Unfortunately, too few of the defects were features: Features make
up 29 of the 185 defects in ManyBugs (21 of the 105-defect subset), and only 4 of the 224
in Defects4J. GenProgJ and KaliJ synthesize none of the features and Nopol synthesizes 1.
Meanwhile GenProgC synthesized 11, TrpAutoRepair synthesized 12 and AE synthesized
10 out of 29 features from 185-subset of ManyBugs and SPR synthesized 5, Prophet syn-
thesized 4 and KaliC synthesized 5 out of 21 features from 105-subset of ManyBugs. These
sample sizes are too small and none of our experimentsv revealed statistically significant
results.

abstract ManyBugs (105-defect subset)
parameter technique Somers’ d 95% CI p patched unpatched

line count

SPR (produces patch) − 0.405 [− 0.655, − 0.155] 0.001 41 43
SPR (correct patch) − 0.405 [− 0.826, 0.016] 0.023 12 72
Prophet (produces patch) − 0.342 [− 0.594, − 0.090] 0.006 39 45
Prophet (correct patch) − 0.564 [− 0.963, − 0.165] 0.001 14 70

file count

SPR (produces patch) − 0.256 [− 0.402, − 0.111] 0.002 41 43
SPR (correct patch) − 0.120 [− 0.264, 0.024] 0.328 12 72
Prophet (produces patch) − 0.191 [− 0.339, − 0.042] 0.028 39 45
Prophet (correct patch) − 0.214 [− 0.284, − 0.144] 0.093 14 70

statement coverage

SPR (produces patch) − 0.073 [− 0.366, 0.220] 0.640 34 25
SPR (correct patch) 0.312 [− 0.071, 0.695] 0.099 12 47
Prophet (produces patch) − 0.090 [− 0.385, 0.204] 0.558 32 27
Prophet (correct patch) 0.284 [− 0.101, 0.668] 0.135 12 47

triggering test count

SPR (produces patch) 0.018 [− 0.182, 0.217] 0.866 41 43
SPR (correct patch) 0.109 [− 0.208, 0.426] 0.470 12 72
Prophet (produces patch) − 0.013 [− 0.212, 0.186] 0.905 39 45
Prophet (correct patch) 0.118 [− 0.179, 0.416] 0.390 14 70

relevant test count

SPR (produces patch) 0.087 [− 0.159, 0.332] 0.497 41 43
SPR (correct patch) 0.319 [− 0.100, 0.739] 0.078 12 72
Prophet (produces patch) 0.085 [− 0.162, 0.332] 0.507 39 45
Prophet (correct patch) 0.272 [− 0.093, 0.638] 0.110 14 70

priority

SPR (produces patch) − 0.111 [− 0.510, 0.288] 0.753 9 5
SPR (correct patch) − 0.154 [− 0.366, 0.058] 1.000 1 13
Prophet (produces patch) − 0.111 [− 0.510, 0.288] 0.753 9 5
Prophet (correct patch) NA NA NA 0 14

versions

SPR (produces patch) − 0.120 [− 0.358, 0.118] 0.338 25 17
SPR (correct patch) − 0.206 [− 0.307, − 0.104] 0.312 8 34
Prophet (produces patch) 0.021 [− 0.205, 0.246] 0.882 23 19
Prophet (correct patch) − 0.206 [− 0.307, − 0.104] 0.312 8 34

time to fix

SPR (produces patch) − 0.175 [− 0.555, 0.205] 0.382 20 16
SPR (correct patch) − 0.172 [− 0.681, 0.337] 0.501 7 29
Prophet (produces patch) − 0.152 [− 0.537, 0.233] 0.447 19 17
Prophet (correct patch) − 0.192 [− 0.710, 0.326] 0.452 7 29

Fig. 14 Defect complexity and test suite effectiveness exhibit statistically significant associations with the
techniques’ ability to produce high-quality patches. SPR and Prophet are the only two techniques that produce
a sufficient number of high-quality patches for this analysis. The 95% CI (confidence interval) column shows
the range in which Somers’ d lies with a 95% confidence. Rows for which both the Mann-Whitney U test
produces a p value below 0.05 and the 95% CI does not span zero are bold. The data shown are only for
those defects classified as bugs and with known respective parameter values

2930 Empir Software Eng (2018) 23:2901–2947

4.8 Discussion

This section discusses the implications of our findings (Section 4.8.1), makes observations
about our dataset and the use of the methodology that produced it (Section 4.8.2), and
analyzes potential confounding factors within our evaluation (Section 4.8.3).

4.8.1 Implications

Our data suggest several encouraging conclusions. First, automated repair techniques are
slightly more likely to produce patches for defects of a higher priority, and are equally
likely to produce patches for defects regardless of how long developer(s) took to fix them.
The former finding may suggest differences between low- and high-priority defects, from
the point of view of automated program repair. Second, while overall, automated repair
techniques were more likely to produce patches for defects that required fewer edits by
the developers to fix, the correlations were not strong for all techniques, and the tech-
niques were able to produce patches for some hard-to-repair-manually defects. Producing
larger patches requires search-based automated repair techniques to explore more of the
search space, which requires longer execution time. As repair techniques typically oper-
ate with a time limit, finding such patches may be more difficult than smaller ones.
The fact that techniques were able to find patches for some defects that were hard to
repair manually suggests that either the techniques are able to sometimes successfully
traverse the large search space, or that smaller patches exist than the manually written
ones.

At the same time, our data suggest that Java repair techniques had a harder time produc-
ing patches for defects with more triggering or more relevant tests. This finding is intuitive
because each test executing code related to the defect represents constraints on the patch. To
produce a patch, the automated repair techniques have to modify the code to satisfy all the
constraints. The more constraints there are, the harder it is to find a satisfying patch. Prior
studies have found that higher-coverage test suites can lead to higher-quality patches (Smith
et al. 2015) and that larger search spaces lead to a higher fraction of incorrect patches (Long
and Rinard 2016a). As a result, we find that test suites that make it easier to produce a patch
reduce, in expectation, the quality of the produced patch. This identifies a research challenge
of creating techniques that are capable of either finding patches effectively even when con-
strained by high-quality test suites, or discriminating between low-quality and high-quality
patches despite using test suites that provide few guiding constraints.

We identified some evidence that targeting repair techniques to specific defects is worth-
while, as defects that required a developer to write new if statements were more likely to
be correctly repaired by SPR and Prophet, two techniques designed to insert or modify
conditional statements. This provides preliminary evidence that perhaps when automated
repair techniques are applied to defects that developers patched using the kinds of changes
the techniques are designed to make, the techniques are capable of making higher-quality
changes.

4.8.2 Dataset Observations

The ManyBugs and Defects4J datasets lack certain kinds of data diversity to answer some
of our proposed research questions. For example, every defect in ManyBugs that included

Empir Software Eng (2018) 23:2901–2947 2931

ManyBugs
file line relevant triggering statement time

count count test count test count coverage to fix versions priority
line count 0.46

relevant test count − 0.22 − 0.13
triggering test count 0.05 0.14 − 0.04
statement coverage − 0.01 − 0.14 0.30 0.03

time to fix 0.07 0.10 − 0.19 0.11 0.02
versions 0.11 0.10 − 0.30 − 0.16 − 0.12 0.18
priority − 0.23 − 0.50 0.12 − 0.14 0.26 0.12 0.06

dependents — — — — — — — —

Defects4J
file line relevant triggering statement time

count count test count test count coverage to fix versions priority
line count 0.17

relevant test count 0.17 0.08
triggering test count 0.11 0.04 0.22
statement coverage 0.00 − 0.02 − 0.01 − 0.03

time to fix 0.05 0.13 0.22 0.11 − 0.02
versions − 0.10 0.02 − 0.02 − 0.02 0.00 − 0.15
priority 0.03 0.11 − 0.13 − 0.05 0.04 − 0.19 0.10

dependents 0.04 0.09 − 0.05 − 0.10 0.05 0.17 − 0.11 0.09

Fig. 15 Pairwise Spearman correlation coefficients for the abstract parameters for the ManyBugs and
Defects4J defects. The bold coefficients are statistically significant (p ≤ 0.05) and underlined coefficients
are weakly statistically significant (p ≤ 0.1)

dependence information did not depend on other defects. Similarly, only two of the evalu-
ated repair techniques produced sufficiently many high-quality patches for our analysis to
make statistically significant findings about patch quality. Nevertheless, this paper presents
a methodology that can be applied to other datasets to derive more data to answer these
questions, particularly as the body of defects on which automated program repair techniques
are evaluated grows.

One of the goals of our study has been to create a methodology for evaluating the appli-
cability of automated program repair techniques that can be applied to new techniques and
help drive research toward improving such applicability. As such, none of the defect char-
acteristics we consider are specific to a repair technique. For example, we define defect
complexity in terms of the number of lines and number of files edited by the minimized
developer-written patch, and how easy it is to reproduce the defect. We do not take into
account that some repair techniques may, for example, find defects that involve control flow
more complex than ones that do not. Our study of RQ5 empirically identifies several charac-
teristics of the defects’ developer-written patches (such as if the patch changes a conditional
or adds a function argument) that associate with the techniques’ ability to produce patches
for those defects. Studying technique-specific complexity of defects is also a worthwhile
effort, but it is beyond the scope of our work on creating a technique-agnostic applicability
evaluation methodology.

4.8.3 Confounding Factor Analysis

To consider potential confounding factors in our analyzes, we computed the Spearman
correlation coefficients between all pairs of abstract parameters. Figure 15 shows these

2932 Empir Software Eng (2018) 23:2901–2947

coefficients for ManyBugs and Defects4J. The bold coefficients are statistically significant
(p ≤ 0.05) and underlined coefficients are weakly statistically significant (p ≤ 0.1). To be
conservative in our analysis, we consider all pairs that correlate at least weakly significantly
(p < 0.1) to pose potential confounding factors. We found that for ManyBugs, the follow-
ing pairs of cross-defect-characteristic parameters correlated at least weakly significantly:
file count correlates with relevant test count and triggering test count, line count correlates
with triggering test count and statement coverage, and versions correlates with relevant test
count. For Defects4J, relevant test count correlates with time to fix and priority. (All other
correlations of at least weak statistical significance were within defect characteristics, e.g.,
file count correlated with line count.)

For each correlating cross-characteristic parameter pair 〈p1, p2〉, we created four logistic
regression models for repairability:
Model1: a model using only p1,
Model2: a model using only p2,
Model1+2: a model using a linear combination of p1 and p2 (p1 + p2), and
Model1∗2: a model using all possible interactions between p1 and p2 (p1 ∗ p2).
We then pairwise compare the models’ goodness of fit using the area under the curve
and determine the statistical significance in the models’ quality improvement. We consider
improvements that are at least weakly statistically significant to demonstrate confounding
factors. If Model1+2 shows a significant improvement over model Model1, we determine
that parameter p2’s contribution to the model is significant. Similarly, if Model1+2 improves
over Model2 then p1 contributes. Finally, if Model1∗2 improves significantly on Model1+2,
then there exists an interaction between p1 and p2 whose contribution is significant.

Analyzing the correlated pairs of parameters, we find that:

– For all C techniques except TrpAutoRepair, relevant test count does not contribute sig-
nificantly to model quality beyond file count’s contribution. We conclude, for our C
analysis, that the observed correlation (weak, significant for TrpAutoRepair) between
relevant test count and repairability (Section 4.3) is not due to the confounding factor
of relevant test count correlating with file count. The interactions between relevant test
count and file count do not significantly contribute to the quality of model.

– For all C techniques, triggering test count does not contribute significantly to model
quality beyond file count’s contribution; however, for GenProgC, interactions of file
count and triggering test count do offer a significant contribution. We conclude, for our
C analysis, that the observed correlation (moderate, weakly significant for TrpAutoRe-
pair) between triggering test count and repairability (Section 4.3) is likely largely due
to the confounding factor of triggering test count correlating with file count, and file
count correlating with repairability, although the combination of the two parameters
does add some useful information.

– For GenProgC, TrpAutoRepair, SPR, Prophet, and
⋃

C on the full 185-defect Many-
Bugs, both line count and triggering test count contribute significantly to model quality.
For TrpAutoRepair, Prophet, and

⋃
C, ManyBugs, interactions between the two param-

eters significantly contribute more than the two parameters on their own. We conclude,
for our C analysis, that the correlation between line count and triggering test count is
not a confounding factor.

– For each C technique except AE and
⋃

C on 185-defect ManyBugs, both line count and
statement coverage contribute significantly to model quality. The interactions between

Empir Software Eng (2018) 23:2901–2947 2933

the two offer no significant contribution. We conclude, for our C analysis, that the
correlation between line count and statement coverage is not a confounding factor.

– For each C technique except GenProgC, both relevant test count and versions con-
tribute significantly to model quality. The interactions between the two parameters do
not contribute significantly more than the two parameters on their own. We conclude,
for our C analysis, that the correlation between relevant test count and versions is not a
confounding factor.

– For each Java technique except Nopol, both relevant test count and time to fix contribute
significantly to model quality. For Nopol, time to fix does not contribute significantly
to model quality beyond relevant test count’s contribution. The interactions between
the two parameters do not contribute additional information. We conclude, for our
Java analysis, that the correlation between relevant test count and time to fix is not a
confounding factor.

– For each Java technique except GenProgJ and KaliJ, priority and relevant test count
contribute significantly to the model quality. For GenProgJ and KaliJ, priority does
not contribute significantly beyond relevant test count’s contribution. The interactions
between the two parameters do not contribute significantly more than the two param-
eters on their own. We conclude, for our Java analysis, that the observed correlations
(moderate, weakly significant for GenProgJ and KaliJ) between priority and repairabil-
ity (Section 4.1) is likely largely due to the confounding factor of priority correlating
with relevant test count, and relevant test count correlating with repairability.

We conclude that the number of files edited by the developer-written patch is a con-
founding factor to relevant and triggering test count in the ManyBugs dataset, and
that relevant test count is a confounding factor to priority in the Defects4J dataset.
All other observed correlations between the parameters do not indicate confound-
ing factors. Our earlier conclusions are not affected by this analysis as only weak
or weakly significant observed correlations in only a few cases are affected by the
confounding factors, and those observed correlations did not lead to conclusions.

5 Threats to Validity

This paper investigates the relationship between automated repair techniques’ ability to pro-
duce patches and characteristics of the defects, test suites, and developer-written patches
for the defects. However, this paper only begins to explore the relationship between these
characteristics and the quality of the patches (recall RQ6). Future work needs to address
this concern, as today, techniques repair very few of the studied defects correctly, reducing
the power of our analysis. The methodology presented in this paper can be applied to other
defect benchmarks as they become available, and to other repair techniques that focus on
repair quality and applicability.

The goal of our study is to characterize the kinds of defects for which automated program
repair is capable of producing patches and high-quality patches. The study is observational.
Of course, given a defect, changing its metadata, such as its priority, will not affect the tech-
niques’ ability to produce patches, and our findings should be viewed as directing research
into improving or creating new automated program repair techniques, not as methods for

2934 Empir Software Eng (2018) 23:2901–2947

making existing repair techniques apply to specific defects. However, some of our findings
suggest how altering inputs to automated program repair techniques may affect patch pro-
duction, such as that increasing the number of tests may make it more difficult to produce a
patch.

We took steps to ensure that our study is objective and reproducible. All characteristics
derived from source-code repositories and developer-written patches are computed using
deterministic scripts, available at https://github.com/LASER-UMASS/AutomatedRepair
ApplicabilityData/. However, some of the judgments with respect to which parameters are
relevant to this study are subjective. We addressed this threat by having two authors indepen-
dently collect parameters in eleven issue tracking systems, and independently measure all
subjective parameters for the defects we considered. The authors then merged their findings,
paying special attention to any disagreements in initial judgments.

Our study relies on repairability and quality results presented by prior work (Martinez
et al. 2017; Le Goues et al. 2012b, 2015; Long and Rinard 2015, 2016b; Qi et al. 2015)
and errors or subjective judgment quality in that work affects our findings. As an example,
GenProgC makes an assumption that the source code files that must be edited to repair a
defect are known (Le Goues et al. 2012b, 2015); this assumption may not hold in practice,
and that would threaten the generalizability of those repairability results, and, in turn, our
findings. Using results from multiple studies partially mitigates this threat, although using
an objective measure of quality, such as number of independent tests a patch passes (Smith
et al. 2015), would go farther. Unfortunately, such an evaluation requires multiple, indepen-
dent, high-quality test suites for real-world defects, and such test suites do not exist for the
ManyBugs benchmark, but do for Defects4J.

While GenProgC was designed prior to ManyBugs, the other techniques have been devel-
oped in part to compete with GenProgC on the then known (at least partially) ManyBugs
benchmark. This may affect the generalizability of the techniques to other defects, which,
in turn affects the generalizability of our results. We mitigate this threat by using two defect
benchmarks and multiple repair techniques.

Our study treats all parameters related to a characteristic as equally important. This is
likely an oversimplification of the real world. For example, defect priority is likely a better
indicator of a defect’s importance than the number of project versions the defect affects. To
mitigate this threat, we perform independent analyzes with each parameter.

Our study treats all defects related to the same issue in an issue tracking system equally.
This may contribute to noisy data. For example, a single issue, and commit, may resolve
two defects. One of these defects may be critical, while the other is not. Our analysis, due to
lack of finer granularity in the source code repository and issue tracking system, considers
both defects as critical, potentially affecting our findings. The relatively low number of such
defects mitigates this threat, although another study could remove such defects altogether.

We consider a developer-written patch to be a proxy of the complexity of the defect it
patches. In theory, there may be many other patches for the same defect, some smaller and
simpler and others larger and more complex. We mitigate this threat by considering a large
number of defects and using benchmarks of mature software projects that are less likely to
accept poorly written patches.

6 Related Work

Prior work has argued the importance of evaluating the types of defects automated
repair techniques can repair, and evaluating the produced patches for understandability,

https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/
https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData/

Empir Software Eng (2018) 23:2901–2947 2935

correctness, and completeness (Monperrus 2014). Our work addresses the concern of eval-
uating how defect characteristics affect automated repair success. Most initial technique
presentations evaluate what fraction of a set of defects the technique can produces patches
for, e.g., (Le Goues et al. 2012b; Jin et al. 2011; Carzaniga et al. 2013; Weimer et al.
2009; Weimer et al. 2013; Dallmeier et al. 2009). Some research has evaluated tech-
niques for how quickly they produce patches (e.g., (Le Goues et al. 2012a; Weimer et al.
2013)), how maintainable the patches are (Fry et al. 2012), and how likely developers
are to accept them (Kim et al. 2013). These evaluations neither considered the quality of
the repair, nor the characteristics of the defects that affect the techniques’ success. More
recent work has focused on evaluating the quality of repair. For example, on 204 Eif-
fel defects, manual patch inspection showed that AutoFix produced high-quality patches
for 51 (25%) of the defects, which corresponded to 59% of the patches it produced (Pei
et al. 2014). While AutoFix uses contracts to specify desired behavior, by contrast, the
patch quality produced by techniques that use tests has been found to be much lower.
Manual inspection of the patches produced by GenProgC, TrpAutoRepair (referred to as
RSRepair in that paper), and AE on a 105-defect subset of ManyBugs (Qi et al. 2015),
and by GenProgJ, Nopol, and KaliJ on a 224-defect subset of Defects4J (Martinez et al.
2017) showed that patch quality is often lacking in automatically produced patches. An
automated evaluation approach that uses a second, independent test suite not used to
produce the patch to evaluate the quality of the patch similarly showed that GenProgC,
TrpAutoRepair, and AE all produce patches that overfit to the supplied specification and
fail to generalize to the intended specification (Smith et al. 2015). This work has led to
more research, and new techniques that improve the quality of the patches (Long and
Rinard 2015, 2016b; Ke et al. 2015); however, the questions of which defect characteris-
tics affect repair success, and what kinds of defects can be repaired remain unanswered.
It is the goal of this paper to begin answering these questions, and to motivate research
that improves the applicability of automated repair to important and difficult-to-repair
defects.

Several benchmarks of defects have evolved specifically for evaluating automated repair.
The ManyBugs benchmark (Le Goues et al. 2015) consists of 185 C defects in real-
world software. The IntroClass benchmark (Le Goues et al. 2015) consists of 998 C
defects in very small, student-written programs (although not all 998 are unique). Addi-
tionally, Defects4J (Just et al. 2014), a benchmark of 357 Java defects in real-world
software, while not explicitly designed for automated repair, has been used for this pur-
pose (Martinez et al. 2017). A few other benchmarks have been used, e.g., to evaluate AFix
(Jin et al. 2011), but these benchmarks have either not been made publicly available or have
not been used as widely for automated repair evaluation. Automated repair evaluations using
small-scale benchmarks with artificial defects (Kong et al. 2015), e.g., the Siemens bench-
mark (Hutchins et al. 1994), are unlikely to generalize to real-world defects. This paper
chose to focus on ManyBugs and Defects4J because they are publicly available and well
documented, enabling us to collect the necessary data about defect characteristics described
in Section 3, as well as the fact that these benchmarks have been used widely for evaluation
of automated repair techniques (Le Goues et al. 2012b, 2015; Weimer et al. 2013; Qi et al.
2015; Long and Rinard 2015, 2016b; Martinez et al. 2017; Durieux et al. 2015; DeMarco
et al. 2014). The IntroClass defects are also well documented, publicly available, and used
in several automated technique evaluations, but the relatively small size of the defects and
the projects within which they are contained make them a poor dataset for our purposes. Our

2936 Empir Software Eng (2018) 23:2901–2947

work evaluates techniques that work on C and Java defects, but does not explicitly compare
the languages to each other.

Automated repair approaches can be classified broadly into two classes: (1) Generate-
and-validate approaches create candidate patches (often via search-based software engi-
neering (Harman 2007)) and then validate them, typically through testing (e.g., (Perkins
et al. 2009; Weimer et al. 2009; Alkhalaf et al. 2014; Carzaniga et al. 2013; Carzaniga et al.
2010; Coker and Hafiz 2013; Ke et al. 2015; Kim et al. 2013; Weimer et al. 2013; Liu et al.
2014; Sidiroglou-Douskos et al. 2015; Tan and Roychoudhury 2015; Debroy and Wong
2010; Qi et al. 2015; Long and Rinard 2015, 2016b). (2) Synthesis-based approaches use
constraints to build correct-by-construction patches via formal verification or inferred or
programmer-provided contracts or specifications (e.g., Wei et al. (2010), Pei et al. (2014),
Mechtaev et al. (2015), Mechtaev et al. (2016), and Jin et al. (2011)).

Generate-and-validate repair works by generating multiple candidate patches that might
address a particular bug and then validating the candidates to determine if they consti-
tute a repair. In practice, the most common form of validation is testing. These approaches
differ in how they choose which locations to modify, which modifications are permit-
ted, and how the candidates are evaluated. Some approaches use heuristic search over the
search space of patches by applying mutation and crossover selection; e.g., GenProg uses a
genetic algorithm (Weimer et al. 2009; Le Goues et al. 2012a, b), and TrpAutoRepair (Qi
et al. 2013) uses random search. Kali (Qi et al. 2015; Martinez et al. 2017) and Debroy
and Wong (Debroy and Wong 2010) use exhaustive search over modification operators,
such as statement removal and conditional operations. SPR (Long and Rinard 2015) syn-
thesizes candidate conditionals that can be inserted into programs. MT-APR (Jiang et al.
2016) uses metamorphic testing, eliminating the need for test oracles by instead of check-
ing the correctness of individual test outputs, check testing results through verification of
relations among multiple test cases and their outputs. SearchRepair (Ke et al. 2015) uses
candidate code selected from other source code based on automatically-generated, desired
patch input-output relationship profiles to generate patches. Par (Kim et al. 2013) uses tem-
plates from historical developer-written patches as its set of allowed code modifications,
although these templates apply to only 15% of manually-written defect patches (Soto et al.
2016). Prophet (Long and Rinard 2016b) similarly learns templates from prior developer-
written patches, but in an automated manner. ClearView (Perkins et al. 2009) constructs
run-time patches using Daikon-mined data-value pre- and post-conditions (Ernst et al.
2001).

Some testing is concerned with non-functional properties (Ammann and Offutt 2008;
Galhotra et al. 2017) and errors outside of the codebase (Muşlu et al. 2013, 2015; Wang et al.
2015). Repair-like approaches can be applied in this context, e.g., (Langdon et al. 2016;
Petke et al. 2017; Schulte et al. 2014) for program improvement. Our study did not consider
repair of such non-functional properties, but future work could apply a similar methodology
in that context.

By contrast to test-based generate-and-validate repair mechanism, synthesis-based
approaches generate correct-by-construction patches, still, of course, limited by the quality
of the specification. Nopol (DeMarco et al. 2014), SemFix (Nguyen et al. 2013), Direct-
Fix (Mechtaev et al. 2015), and Angelfix (Mechtaev et al. 2016) use SMT or SAT constraints
to encode test-based specifications. (SearchRepair (Ke et al. 2015) mentioned earlier also
uses SMT-constraints to encode desired input-output relationships.) AutoFix (Wei et al.
2010; Pei et al. 2014) and AFix (Jin et al. 2011) deterministically generate patches using

Empir Software Eng (2018) 23:2901–2947 2937

manually-specified pre- and post-condition contracts, with AFix targeting atomicity viola-
tions in concurrent programs. Synthesis-based approaches can repair not only software but
also software tests, e.g., SPECTR (Yang et al. 2012). Real-world specifications are often
partial, but higher quality specifications, e.g., contracts (Wei et al. 2010; Pei et al. 2014),
do tend to produce better quality patches (Smith et al. 2015). This observation has impli-
cations for systems that make runtime decisions, such as self-adaptive systems, e.g., Brun
and Medvidovic (2007a, 2007b); Brun et al. (2015), suggesting that perhaps high-quality
specifications are necessary in that context to improve adaptation quality.

Many of these automated repair techniques evaluate using real-world defects obtained
through ad-hoc case studies, manual search through bug databases, industrial partnerships,
and informal communication with developers. Our study covers many of these techniques,
particularly ones evaluated on publicly available benchmarks, and can be applied to other
techniques as well. While some of these approaches are designed to tackle specific types of
defects (e.g., AFix), the techniques’ evaluations do not focus on which types of defects, and
which defect characteristics positively, and negatively, affect repairability.

7 Contributions

Automated program repair has recently become a popular area of research, but most eval-
uations of repair techniques focus on how many defects a technique can produce a patch
for. This paper, for the first time, analyzes how characteristics of the defects, the test suites,
and the developer-written patches correlate with the repair techniques’ ability to produce
patches, and to a smaller degree, produce high-quality patches. The paper studies seven
popular repair techniques applied to two large defect benchmarks of real-world defects.

We find that automated repair techniques are less likely to produce patches for defects
that required developers to write a lot of code or edit many files, or that have many tests rel-
evant to the defect, and that Java techniques are moderately more likely to produce patches
for high-priority defects. The time it took developers to fix a defect does not correlate with
automated repair techniques’ ability to produce patches. A test suite’s coverage also does
not correlate with the ability to produce patches, but higher coverage correlated with higher-
quality patches. Finally, automated repair techniques had a harder time fixing defects that
required developers to add loops or new function calls, or change method signatures.

We produce a methodology and data that extend the ManyBugs and Defects4J bench-
marks to enable evaluating new automated repair techniques, answering questions such as
“can automated repair techniques repair defects that are hard for developers to repair, or
defects that developers consider important?”

Our findings both raise concerns about automated repair’s applicability in practice, and
also provide promise that, in some situations, automated repair can properly patch important
and hard defects. Recent work on evaluating repair quality (Brun et al. 2013; Smith et al.
2015; Qi et al. 2015; Martinez et al. 2017; Durieux et al. 2015) has led to work to improve
the quality of patches produced by automated repair (Long and Rinard 2015, 2016b; Ke
et al. 2015). Our position is that our work will similarly inspire new research into improving
the applicability of automated repair to hard and important defects.

Acknowledgements This work is supported by the National Science Foundation under grants CCF-
1453474 and CCF-1564162.

2938 Empir Software Eng (2018) 23:2901–2947

Appendix A: Importance and Difficulty Data

Table 1 describes the relevant concrete parameters for each of the bug tracking systems,
project-hosting platforms, and defect benchmarks. We omit the semantics of the specific
names the various systems and platforms use. This information is available from the under-
lying bug tracking systems and project-hosting platforms. Table 2 shows the mapping from
concrete parameters to abstract parameters and to the five defect characteristics.

Table 1 We used grounded theory to extract from bug tracking systems, project-hosting platforms, and
defect benchmarks the concrete parameters relevant to defect importance and difficulty, as well as several
other parameters interesting to correlate with automated repair techniques’ ability to repair the defect

Issue
tracking
system

Concrete parameters relevant to importance
or difficulty

Other relevant concrete param-
eters

Bugzilla importance (priority and sever-
ity), target milestone, dependencies
(depends on and blocks), reported,
modified, time tracking (orig. est.,
current est., hours worked, hours
left, %complete, gain, deadline),
priority, components

hardware (platform and OS), key-
words, personal tags

FogBugz priority, milestones, die, subcases areas, category

GitHub − labels

Google code open, closed, blockedon, blocking,
priority, reproducible, star

summary+labels

HP ALM/Quality
Center

severity, closing date, detected on
date, priority, reproducible, esti-
mated fix time, view linked entities

—

IBM Rational
ClearQuest

severity, priority keywords

JIRA component/s, votes, watchers, due,
created, updated, resolved, esti-
mate, remaining, logged, priority,
severity, affects versions, fix ver-
sions

environment, labels

Mantis reproducibility, date submitted, last update category, profile, platform, OS, tags

Redmine priority, updated, related issues,
associated revisions, start, due date,
estimated time(hours)

category

SourceForge created, updated, priority, milestone keywords, milestone

Trac component, priority, milestone keywords

Defects4J # of files in the developer-written
patch, # of lines in the developer-
written patch, # of relevant tests, #
of triggering tests, coverage infor-
mation of test suit

—

ManyBugs # of files in the developer-written
patch, # of lines in the developer-
written patch, # of positive tests, #
of negative tests

developer-written patch modifica-
tions types, defect types

Empir Software Eng (2018) 23:2901–2947 2939

Table 2 Mapping of the concrete parameters from Table 1 to the eleven abstract parameters and then to the
five defect characteristics

Defect Abstract Concrete
characteristic parameter parameters

Importance Time to fix: the amount of time (days)
taken by developer(s) to fix a defect.
This is computed as the time difference
between when the issue was reported
and when the issue was resolved.
Depending on the issue tracking system,
different concrete parameters are used
to obtain these two timestamps.

reported, modified, time tracking (orig.
est., current est., hours worked, hours left,
%complete, gain, deadline), due, created,
updated, resolved, estimate, remaining,
logged, date submitted, last update, start,
due date, estimated time (hours), closing
date, detected on date, estimated fix time,
opened, closed, milestone

Priority: importance of fixing a defect
in terms of defect priority. This is
obtained using priority assigned to the
defect. Different issue tracking systems
use different values to denote low, nor-
mal, high, critical, blocker defects. We
use a scale of 1 to 5 corresponding to
these priority values (1 is the lowest
priority and 5 is the highest) and map
the values used by issue tracking sys-
tems to our scale. Significance is mea-
sured using the number of watchers for
a defect, or the number of votes.

priority, importance (priority and
severity), watchers, votes, stars

Versions: effect of defect on different
versions of a project or other project
modules and components.

components, linked entities, affects ver-
sions, fix versions

Complexity File count:the number of files contain-
ing non-comment, non-blank-line edits
in the developer-written fix

information available from commits on
issue tracking systems and helper scripts
provided by Defects4J repository.

Line count: the total number of non-
comment, non-blank lines of code in the
developer-written fix

information obtained using diff between
buggy and fixed source code files. Helper
scripts provided with Defects4J

Reproducibility: how easy it is to
reproduce the defect

reproducible, reproducibility

Test
Effectiveness

Statement coverage: the fraction of the
lines in the files edited by the developer-
written patches that are executed by the
test suite

provided by Defects4J framework

Triggering test count: number of
defect triggering test cases

information provided intest.sh script
in ManyBugs and triggering tests in
Defects4J

Relevant test count: number of test
cases that execute at least one state-
ment in at least one file edited by the
developer-written patch

information provided in test.sh
script in ManyBugs and relevant tests
in Defects4J

Independence Dependents: number of defects (also
with URLs to issue tracking systems)
on which the fixing of a given defect
depends

Dependencies (depends on and blocks),
blockedon, related issues, subcases

Characteristics
of the developer-
written
patch

Patch characteristics: characteris-
tics of the developer-written patch
in terms of the type of code modifi-
cations done to fix the defect

information about bug type available
within the ManyBugs metadata

2940 Empir Software Eng (2018) 23:2901–2947

Appendix B: Availability of Data for Annotating Defects

Table 3 describes information about which abstract parameters were available in different
issue tracking systems used by ManyBugs and Defects4J projects and how the correspond-
ing concrete parameters were used to annotate the defects. Figure 16 shows the number of
defects annotated for each abstract parameter using concrete parameters from bug trackers
and benchmarks.

Table 3 Information about abstract parameters obtained from the issue tracking systems

Project Issue Time to Priority Versions Dependents Reproducibility

tracking fix

system

ManyBugs

PHP php difference NA number NA NA

bugs between of values

timestamps in “PHP

of “Modified” Version”

and “Submitted”

python python
bugs

difference
between times-
tamps of “Last
changed” and
“created on”

value of “Prior-
ity” scaled to our
range of [1,5] as:
low → 1; normal
→ 2; high →
3; critical → 4;
deferred blocker
→ 5; release
blocker → 5

number of ver-
sions in “Ver-
sions”

number of val-
ues in “Depen-
dencies”

NA

gzip mail
archive

NA NA number of ver-
sions in “Ver-
sion”

NA NA

Debian
bugs

NA value of “Sever-
ity” scaled to our
range of [1,5]
as: critical →
5; grave → 5;
serious → 4;
important → 3;
normal → 2;
minor → 1

number of ver-
sions in “Ver-
sion”

NA NA

libtiff Bugzilla
Map
Tools

difference
in times-
tamps of
“Modi-
fied” and
“Reported”

NA number of ver-
sions in “Ver-
sion”

value of
“Depends
on:”

NA

valgrind KDE
Bug
tracking
System

difference
in times-
tamps of
“Modi-
fied” and
“Reported”

value of
“Impor-
tance”

number of ver-
sions in “Ver-
sion” field

information
in “Depen-
dency
tree/graph”

NA

Empir Software Eng (2018) 23:2901–2947 2941

Table 3 (continued)

Project Issue
tracking
system

Time to
fix

Priority Versions Dependents Reproducibility

lighttpd Redmine NA value of “Prior-
ity:” scaled to our
range of [1,5] as:
low → 1; nor-
mal → 2; high →
3; urgent → 4;
immediate → 5

values in
“Target
ver-
sion:”

NA NA

Defects4J

CommonMath Apache
issues

value of
“Open
→
Resolved”
field in
“Tran-
sitions”
tab

value of “Pri-
ority”

number of
versions in
“Affected
versions”
and “fix
versions”

number
of “Issue
Links”

NA

CommonLang Apache
issues

value
of,“Open
→
Resolved”
field in
“Tran-
sitions”
tab

value of “Pri-
ority”

number of
versions
in,“Affected
versions”
and “fix
versions”

number
of “Issue
Links”

NA

JFreeChart Sourceforge difference
between
timestamps
of “Updated”
and “Created”

value of “Prior-
ity” scaled to our
range of [1,5] as:
4 → 1; 5 → 2; 6
→ 3,7; 8 → 4;9
→ 5

NA NA NA

JodaTime Github difference
between
timestamps
of “Created”
and “Last
Commit”

NA NA NA NA

Sourceforge difference
between
timestamps
of “Updated”
and
“Created”

value of “Prior-
ity” scaled to our
range [1,5] as: 4
→ 1; 5 → 2; 6 →
3,7; 8 → 4;9 → 5

NA NA NA

2942 Empir Software Eng (2018) 23:2901–2947

ManyBugs
time to fix: 105 file count: 185 statement coverage: 133 dependents: 88
priority: 25 line count: 185 triggering test count: 185 patch characteristics: 185
versions: 111 reproducibility: 0 relevant test count: 185

Defects4J
time to fix: 203 file count: 224 statement coverage: 224 dependents: 169
priority: 191 line count: 224 triggering test count: 224 patch characteristics: 224
versions: 169 reproducibility: 0 relevant test count: 224

Fig. 16 The number of defects annotated for each abstract parameter using the information described in
Table 3 and data available in the ManyBugs and Defects4J benchmarks

References

Alkhalaf M, Aydin A, Bultan T (2014) Semantic differential repair for input validation and sanitization. In:
International symposium on software testing and analysis (ISSTA), San Jose, CA, USA, pp 225–236

Ammann P, Offutt J (2008) Introduction to software testing, 1st edn. Cambridge University Press, New York
Arcuri A, Yao X (2008) A novel co-evolutionary approach to automatic software bug fixing. In: Congress on

Evolutionary Computation, pp 162–168
Bradbury JS, Jalbert KDi Penta M, Poulding S, Briand L, Clark J (eds) (2010) Automatic repair of

concurrency bugs. Benevento, Italy
Brun Y, Bang J, Edwards G, Medvidovic N (2015) Self-adapting reliability in distributed software systems.

IEEE Transactions on Software Engineering (TSE) 41(8):764–780. https://doi.org/10.1109/TSE.2015.
2412134

Brun Y, Barr E, Xiao M, Le Goues C, Devanbu P (2013) Evolution vs. intelligent design in program patching.
Tech. Rep. https://escholarship.org/uc/item/3z8926ks, UC Davis: College of Engineering

Brun Y, Medvidovic N (2007) An architectural style for solving computationally intensive problems on large
networks. In: Software engineering for adaptive and self-managing systems (SEAMS). Minneapolis,
MN, USA. https://doi.org/10.1109/SEAMS.2007.4

Brun Y, Medvidovic N (2007) Fault and adversary tolerance as an emergent property of distributed sys-
tems’ software architectures. In: International workshop on engineering fault tolerant systems (EFTS).
Dubrovnik, Croatia, pp 38–43. https://doi.org/10.1145/1316550.1316557

Bryant A, Charmaz K (2007) The SAGE handbook of grounded theory. SAGE Publications Ltd, New York
Carbin M, Misailovic S, Kling M, Rinard M (2011) Detecting and escaping infinite loops with xJolt. In:

European conference on object oriented programming (ECOOP). Lancaster, England, UK
Carzaniga A, Gorla A, Mattavelli A, Perino N, Pezzė M (2013) Automatic recovery from runtime failures. In:

ACM/IEEE international conference on software engineering (ICSE). San Francisco, CA, USA, pp 782–
791

Carzaniga A, Gorla A, Perino N, Pezzė M (2010) Automatic workarounds for web applications. In: ACM
SIGSOFT international symposium on foundations of software engineering (FSE). Santa Fe, New
Mexico, USA, pp 237–246. https://doi.org/10.1145/1882291.1882327

Charmaz K (2006) Constructing grounded theory: a practical guide through qualitative analysis. SAGE
Publications Ltd, New York

Coker Z, Hafiz M (2013) Program transformations to fix C integers. In: ACM/IEEE international conference
on software engineering (ICSE). San Francisco, CA, USA, pp 792–801

Dallmeier V, Zeller A, Meyer B (2009) Generating fixes from object behavior anomalies. In: IEEE/ACM
international conference on automated software engineering (ASE) short paper track. Auckland, New
Zealand, pp 550–554. https://doi.org/10.1109/ASE.2009.15

Debroy V, Wong W (2010) Using mutation to automatically suggest fixes for faulty programs. In:
International conference on software testing, verification, and validation. Paris, France, pp 65–74.
https://doi.org/10.1109/ICST.2010.66

DeMarco F, Xuan J, Berre DL, Monperrus M (2014) Automatic repair of buggy if conditions and missing
preconditions with SMT. In: International workshop on constraints in software testing, verification, and
analysis (CSTVA). Hyderabad, India, pp 30–39. https://doi.org/10.1145/2593735.2593740

Demsky B, Ernst MD, Guo PJ, McCamant S, Perkins JH, Rinard M (2006) Inference and enforcement of
data structure consistency specifications. In: International symposium on software testing and analysis
(ISSTA). Portland, ME, USA, pp 233–243

Durieux T, Martinez M, Monperrus M, Sommerard R, Xuan J (2015) Automatic repair of real bugs: An
experience report on the Defects4J dataset. arXiv:1505.07002

https://doi.org/10.1109/TSE.2015.2412134
https://doi.org/10.1109/TSE.2015.2412134
https://escholarship.org/uc/item/3z8926ks
https://doi.org/10.1109/SEAMS.2007.4
https://doi.org/10.1145/1316550.1316557
https://doi.org/10.1145/1882291.1882327
https://doi.org/10.1109/ASE.2009.15
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1145/2593735.2593740
http://arxiv.org/abs/1505.07002

Empir Software Eng (2018) 23:2901–2947 2943

Elkarablieh B, Khurshid S (2008) Juzi: a tool for repairing complex data structures. In: ACM/IEEE inter-
national conference on software engineering (ICSE) formal demonstration track. Leipzig, Germany,
pp 855–858. https://doi.org/10.1145/1368088.1368222

Ernst MD, Cockrell J, Griswold WG, Notkin D (2001) Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software Engineering (TSE) 27(2):99–123

Ferguson CJ (2009) An effect size primer: a guide for clinicians and researchers. Prof Psychol: Res Prac
40(5):532–538. https://doi.org/10.1037/a0015808

Fry ZP, Landau B, Weimer W (2012) A human study of patch maintainability. In: International symposium
on software testing and analysis (ISSTA). Minneapolis, MN, USA, pp 177–187

Galhotra S, Brun Y, Meliou A (2017) Fairness testing: testing software for discrimination. In: Euro-
pean software engineering conference and ACM SIGSOFT symposium on the foundations of software
engineering (ESEC/FSE). Paderborn, Germany, pp 498–510. https://doi.org/10.1145/3106237.3106277

Gopinath D, Malik MZ, Khurshid S (2011) Specification-based program repair using SAT. In: International
conference on tools and algorithms for the construction and analysis of systems (TACAS). Saarbrücken,
Germany, pp 173–188

Harman M (2007) The current state and future of search based software engineering. In: ACM/IEEE interna-
tional conference on software engineering (ICSE), pp 342–357. https://doi.org/10.1109/FOSE.2007.29

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments of the effectiveness of dataflow-and con-
trol flow-based test adequacy criteria. In: ACM/IEEE international conference on software engineering
(ICSE). Sorrento, Italy, pp 191–200

Jeffrey D, Feng M, Gupta N, Gupta R (2009) Bugfix: a learning-based tool to assist developers in fixing bugs.
In: International conference on program comprehension (ICPC). Vancouver, BC, Canada, pp 70–79.
https://doi.org/10.1109/ICPC.2009.5090029

Jiang M, Chena TY, Kuoa FC, Towey D, Ding Z (2016) A metamorphic testing approach for sup-
porting program repair without the need for a test oracle. J Syst Softw (JSS) 126:127–140.
https://doi.org/10.1016/j.jss.2016.04.002

Jin G, Song L, Zhang W, Lu S, Liblit B (2011) Automated atomicity-violation fixing. In: ACM SIGPLAN
conference on programming language design and implementation (PLDI). San Jose, CA, USA, pp 389–
400. https://doi.org/10.1145/1993498.1993544

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for Java programs. In: Proceedings of the international symposium on software testing and analysis
(ISSTA). San Jose, CA, USA, pp 437–440

Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In:
International conference on automated software engineering (ASE). Lincoln, NE, USA, pp 295–306.
https://doi.org/10.1109/ASE.2015.60

Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In:
ACM/IEEE international conference on software engineering (ICSE). San Francisco, CA, USA, pp 802–
811. http://dl.acm.org/citation.cfm?id=2486788.2486893

Kong X, Zhang L, Wong WE, Li B (2015) Experience report: how do techniques, programs, and tests
impact automated program repair? In: IEEE international symposium on software reliability engineering
(ISSRE). Gaithersburg, MD, USA, pp 194–204. https://doi.org/10.1109/ISSRE.2015.7381813

Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT
Press, Cambridge

Langdon WB, White DR, Harman M, Jia Y, Petke J (2016) API-constrained genetic improvement. In: Inter-
national symposium on search based software engineering (SSBSE). Raleigh, NC, USA, pp 224–230.
https://doi.org/10.1007/978-3-319-47106-8 16

Le XBD, Chu DH, Lo D, Le Goues C, Visser W (2017) S3: syntax- and semantic-guided repair synthe-
sis via programming by examples. In: European software engineering conference and ACM SIGSOFT
international symposium on foundations of software engineering (ESEC/FSE). Paderborn, Germany

Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012a) A systematic study of automated program repair:
Fixing 55 out of 105 bugs for $8 each. In: AMC/IEEE international conference on software engineering
(ICSE). Zurich, Switzerland, pp 3–13

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions on Software Engineering
(TSE) 41(12):1236–1256. https://doi.org/10.1109/TSE.2015.2454513

Le Goues C, Nguyen T, Forrest S, Weimer W (2012b) Genprog: a generic method for automatic software
repair. IEEE Transactions on Software Engineering (TSE) 38:54–72. https://doi.org/10.1109/TSE.2011.
104

Le Roy MK (2009) Research methods in political science: an introduction using MicroCase, 7th edn.
Thompson Learning, Wadsworth

Liu P, Tripp O, Zhang C (2014) Grail: context-aware fixing of concurrency bugs. In: ACM SIGSOFT inter-
national symposium on foundations of software engineering (FSE). Hong Kong, China, pp 318–329

https://doi.org/10.1145/1368088.1368222
https://doi.org/10.1037/a0015808
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1109/ICPC.2009.5090029
https://doi.org/10.1016/j.jss.2016.04.002
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1109/ASE.2015.60
http://dl.acm.org/citation.cfm?id=2486788.2486893
https://doi.org/10.1109/ISSRE.2015.7381813
https://doi.org/10.1007/978-3-319-47106-8_16
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104

2944 Empir Software Eng (2018) 23:2901–2947

Liu P, Zhang C (2012) Axis: Automatically fixing atomicity violations through solving control constraints.
In: ACM/IEEE international conference on software engineering (ICSE). Zurich, Switzerland, pp 299–
309

Long F, Rinard M (2015) Staged program repair with condition synthesis. In: European software engineer-
ing conference and ACM SIGSOFT international symposium on foundations of software engineering
(ESEC/FSE). Bergamo, Italy, pp 166–178. https://doi.org/10.1145/2786805.2786811

Long F, Rinard M (2016a) An analysis of the search spaces for generate and validate patch generation
systems. In: ACM/IEEE international conference on software engineering (ICSE). Austin, TX, USA,
pp 702–713. https://doi.org/10.1145/2884781.2884872

Long F, Rinard M (2016b) Automatic patch generation by learning correct code. In: ACM SIGPLAN-
SIGACT symposium on principles of programming languages (POPL). St. Petersburg, FL, USA,
pp 298–312. https://doi.org/10.1145/2837614.2837617

Martinez M, Durieux T, Sommerard R, Xuan J, Monperrus M (2017) Automatic repair of real bugs in Java: a
large-scale experiment on the Defects4J dataset. Empirical Software Engineering (EMSE) 22(4):1936–
1964. https://doi.org/10.1007/s10664-016-9470-4

Matavire R, Brown I (2013) Profiling grounded theory approaches in information systems research. Eur J Inf
Syst 22(1):119–129. https://doi.org/10.1057/ejis.2011.35

Mechtaev S, Yi J, Roychoudhury A (2015) Directfix: looking for simple program repairs. In: International
conference on software engineering (ICSE). Florence, Italy

Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: Scalable multiline program patch synthesis via symbolic
analysis. In: International conference on software engineering (ICSE). Austin, TX, USA

Monperrus M (2014) A critical review of automatic patch generation learned from human-written
patches: essay on the problem statement and the evaluation of automatic software repair. In:
ACM/IEEE international conference on software engineering (ICSE). Hyderabad, India, pp 234–242.
https://doi.org/10.1145/2568225.2568324

Muşlu K, Brun Y, Meliou A (2013) Data debugging with continuous testing. In: European software
engineering conference and ACM SIGSOFT symposium on the foundations of software engineering
(ESEC/FSE) NIER Track. Saint Petersburg, Russia, pp 631–634. https://doi.org/10.1145/2491411.249
4580

Muşlu K, Brun Y, Meliou A (2015) Preventing data errors with continuous testing. In: Interna-
tional symposium on software testing and analysis (ISSTA). Baltimore, MD, USA, pp 373–384.
https://doi.org/10.1145/2771783.2771792

Newson R (2002) Parameters behind nonparametric statistics: Kendall’s tau, Somers’ D and median
differences. Stata J 2(1):45–64

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) Semfix: program repair via semantic analysis. In:
ACM/IEEE international conference on software engineering (ICSE). San Francisco, CA, USA, pp 772–
781

Orlov M, Sipper M (2011) Flight of the FINCH through the Java wilderness. IEEE Trans Evol Comput
15(2):166–182

Pei Y, Furia CA, Nordio M, Wei Y, Meyer B, Zeller A (2014) Automated fixing of programs with contracts.
IEEE Transactions on Software Engineering (TSE) 40(5):427–449. https://doi.org/10.1109/TSE.2014.
2312918

Perkins JH, Kim S, Larsen S, Amarasinghe S, Bachrach J, Carbin M, Pacheco C, Sherwood F, Sidiroglou S,
Sullivan G, Wong WF, Zibin Y, Ernst MD, Rinard M (2009) Automatically patching errors in deployed
software. In: ACM symposium on operating systems principles (SOSP). Big Sky, MT, USA, pp 87–102,
https://doi.org/10.1145/1629575.1629585

Petke J, Haraldsson SO, Harman M, Langdon WB, White DR, Woodward JR (2017) Genetic improvement
of software: a comprehensive survey. IEEE Transactions on Evolutionary Computation (TEC). In press.
https://doi.org/10.1109/TEVC.2017.2693219

Qi Y, Mao X, Lei Y (2013) Efficient automated program repair through fault-recorded testing prioritization.
In: International conference on software maintenance (ICSM). Eindhoven, The Netherlands, pp 180–
189. https://doi.org/10.1109/ICSM.2013.29

Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness for generate-
and-validate patch generation systems. In: International symposium on software testing and analysis
(ISSTA). Baltimore, MD, USA, pp 24–36. https://doi.org/10.1145/2771783.2771791

Schulte E, Dorn J, Harding S, Forrest S, Weimer W (2014) Post-compiler software optimization for reducing
energy. In: International conference on architectural support for programming languages and oper-
ating systems (ASPLOS). Salt Lake City, UT, USA, pp 639–652. https://doi.org/10.1145/2541940.
2541980

Sidiroglou S, Keromytis AD (2005) Countering network worms through automatic patch generation. IEEE
Secur Priv 3(6):41–49

https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1007/s10664-016-9470-4
https://doi.org/10.1057/ejis.2011.35
https://doi.org/10.1145/2568225.2568324
https://doi.org/10.1145/2491411.2494580
https://doi.org/10.1145/2491411.2494580
https://doi.org/10.1145/2771783.2771792
https://doi.org/10.1109/TSE.2014.2312918
https://doi.org/10.1109/TSE.2014.2312918
https://doi.org/10.1145/1629575.1629585
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2541940.2541980
https://doi.org/10.1145/2541940.2541980

Empir Software Eng (2018) 23:2901–2947 2945

Sidiroglou-Douskos S, Lahtinen E, Long F, Rinard M (2015) Automatic error elimination by horizontal
code transfer across multiple applications. In: ACM SIGPLAN conference on programming language
design and implementation (PLDI). Portland, OR, USA, pp 43–54. https://doi.org/10.1145/2737924.
2737988

Smith EK, Barr E, Le Goues C, Brun Y (2015) Is the cure worse than the disease? Overfitting
in automated program repair. In: European software engineering conference and ACM SIGSOFT
symposium on the foundations of software engineering (ESEC/FSE). Bergamo, Italy, pp 532–543.
https://doi.org/10.1145/2786805.2786825

softwaretestinghelp.com (2015) 15 most popular bug tracking software to ease your defect management
process. http://www.softwaretestinghelp.com/popular-bug-tracking-software/, accessed December 11
2015

Soto M, Thung F, Wong CP, Goues CL, Lo D (2016) a deeper look into bug fixes: patterns, replacements,
deletions, and additions. In: International conference on mining software repositories (MSR) mining
challenge track. Austin, TX, USA. https://doi.org/10.1145/2901739.2903495

Tan SH, Roychoudhury A (2015) relifix: automated repair of software regressions. In: International
conference on software engineering (ICSE). Florence, Italy

Wang X, Dong XL, Meliou A (2015) Data X-Ray: a diagnostic tool for data errors. In: International
conference on management of data (SIGMOD)

Wei Y, Pei Y, Furia CA, Silva LS, Buchholz S, Meyer B, Zeller A (2010) Automated fixing of programs with
contracts. In: International symposium on software testing and analysis (ISSTA). Trento, Italy, pp 61–72.
https://doi.org/10.1145/1831708.1831716

Weimer W, Fry ZP, Forrest S (2013) Leveraging program equivalence for adaptive program repair: models
and first results. In: IEEE/ACM international conference on automated software engineering (ASE). Palo
alto, CA, USA

Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic program-
ming. In: ACM/IEEE international conference on software engineering (ICSE). Vancouver, BC, Canada,
pp 364–374. https://doi.org/10.1109/ICSE.2009.5070536

Weiss A, Guha A, Brun Y (2017) Tortoise: interactive system configuration repair. In: International
conference on automated software engineering (ASE). Urbana-champaign, IL, USA

Wilkerson JL, Tauritz DR, Bridges JM (2012) Multi-objective coevolutionary automated software correction.
In: Conference on genetic and evolutionary computation (GECCO). Philadelphia, PA, USA, pp 1229–
1236. https://doi.org/10.1145/2330163.2330333

Yang G, Khurshid S, Kim M (2012) Specification-based test repair using a lightweight formal
method. In: International symposium on formal methods (FM). Paris, France, pp 455–470.
https://doi.org/10.1007/978-3-642-32759-9 37

Manish Motwani is a PhD student at the University of Massachusetts, Amherst. His primary research area is
software engineering and he is interested in improving software engineers’ productivity by automating soft-
ware engineering practices. His research involves analyzing large software repositories to learn interesting
phenomena in software development and maintenance, and to use that knowledge to design novel automation
techniques, such as testing and program repair. Prior to joining UMass, he worked at the Tata Research Devel-
opment and Design Center, India where he designed and developed techniques to automate the requirements
elicitation and security compliance value chain processes. He earned a BS in Computer Science and Engineer-
ing with specialization in Computer Networks from the International Institute of Information Technology,
Hyderabad, India.

https://doi.org/10.1145/2737924.2737988
https://doi.org/10.1145/2737924.2737988
https://doi.org/10.1145/2786805.2786825
http://www.softwaretestinghelp.com/popular-bug-tracking-software/
https://doi.org/10.1145/2901739.2903495
https://doi.org/10.1145/1831708.1831716
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/2330163.2330333
https://doi.org/10.1007/978-3-642-32759-9_37

2946 Empir Software Eng (2018) 23:2901–2947

Sandhya Sankaranarayanan is an engineer in Emerging Solutions and Architecture at VMware. She
received her MS from the University of Massachusetts, Amherst in 2017.

René Just is an Assistant Professor at the University of Massachusetts, Amherst. His research interests are
in software engineering and software security, in particular static and dynamic program analysis, mobile
security, mining software repositories, and applied machine learning. His research in the area of software
engineering won three ACM SIGSOFT Distinguished Paper Awards, and he develops research infrastructures
and tools (e.g., Defects4J and the Major mutation framework) that are widely used by other researchers.

Empir Software Eng (2018) 23:2901–2947 2947

Yuriy Brun is an Associate Professor with the University of Massachusetts, Amherst. His research interests
include software engineering, software fairness, self-adaptive systems, and distributed systems. He received
his PhD from the University of Southern California in 2008 and was a Computing Innovation postdoctoral
fellow at the University of Washington until 2012. Prof. Brun is a recipient of the NSF CAREER Award
in 2015, the IEEE TCSC Young Achiever in Scalable Computing Award in 2013, a Best Paper Award in
2017, two ACM SIGSOFT Distinguished Paper Awards in 2011 and 2017, a Microsoft Research Software
Engineering Innovation Foundation Award in 2014, a Google Faculty Research Award in 2015, a Lilly Fel-
lowship for Teaching Excellence in 2017, a College Outstanding Teacher Award in 2017, and an ICSE 2015
Distinguished Reviewer Award.

	Do automated program repair techniques repair hard and important bugs?
	Abstract
	Introduction
	Subjects of Investigation
	Automated Repair Techniques
	Defect benchmarks
	Benchmark Extensions

	Repairability Information

	Methodology
	Identifying importance and difficulty data
	Statistical tests
	Defect Importance
	Priority of the Defect
	Does the Defect Affect More Than One Project Version?
	Time Taken to Fix the Defect

	Defect Complexity
	Number of Source Files Edited by the Developer-Written Patch
	Number of Non-Blank, Non-Comment Lines of Code in Developer-Written Patch

	Test Effectiveness
	Defect Independence
	Developer-Written Patch Characteristics

	Characterizing the ManyBugs and Defects4J Data

	Results*-.5pt
	Defect Importance*-.5pt
	Priority of the Defect
	Does the Defect Affect more than one Project Version?
	Time Taken to Fix the Defect

	Defect Complexity
	Number of Source Files Edited by the Developer-Written Patch
	Number of Non-Blank, Non-Comment Lines of Code in Developer-Written Patch

	Test Effectiveness
	The Fraction of the Lines in the Files Edited by the Developer-Written Patches that are Executed by the Test Suite.
	The Number of Defect-Triggering Test Cases
	The Number of Relevant Test Cases (Test Cases that Execute at Least one Line of the Developer-Written Patch)

	Defect Independence
	Developer-Written Patch Characteristics
	Patch Quality
	Defect Complexity
	Test Suite Effectiveness
	Developer-Written Patch Characteristics

	Feature Synthesis
	Discussion
	Implications
	Dataset Observations
	Confounding Factor Analysis

	Threats to Validity
	Related Work
	Contributions
	Acknowledgements
	Appendix: A: Importance and Difficulty Data
	Appendix B: Availability of Data for Annotating Defects
	References

