
Themis: Automatically Testing Software for Discrimination
Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou

University of Massachusetts Amherst
Amherst, Massachusetts, USA

{rangell, bjohnson, brun, ameli}@cs.umass.edu

ABSTRACT

Bias in decisions made by modern software is becoming a common
and serious problem. We present Themis, an automated test suite
generator to measure two types of discrimination, including causal
relationships between sensitive inputs and program behavior. We
explain how Themis can measure discrimination and aid its debug-
ging, describe a set of optimizations Themis uses to reduce test
suite size, and demonstrate Themis’ effectiveness on open-source
software. Themis is open-source and all our evaluation data are
available at http://fairness.cs.umass.edu/. See a video of Themis in
action: https://youtu.be/brB8wkaUesY

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Software fairness, discrimination testing, fairness testing, software
bias, testing, Themis, automated test generation
ACM Reference Format:

Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018.
Themis: Automatically Testing Software for Discrimination. In Proceedings
of the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’18), November
4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3236024.3264590

1 INTRODUCTION

Software plays an important role in making decisions that shape
our society. Software decides what products we are led to buy [36];
who gets financial loans [43]; what a self-driving car does, which
may lead to property damage or human injury [24], how medical
patients are diagnosed and treated [48], and who gets bail and
which criminal sentence [4]. Unfortunately, there are countless
examples of bias in software. Translation engines inject societal
biases, e.g., “She is a doctor” translated into Turkish and back into
English becomes “He is a doctor” [19]. YouTube is more accurate
when automatically generating closed captions for videos with
male than female voices [50]. Facial recognition systems often
underperform on female and black faces [32]. In 2016, Amazon

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264590

software decided not to offer same-day delivery to predominantly
minority neighborhoods [35]. And the software US courts use to
assess the risk of a criminal repeating a crime exhibits racial bias [4].

Bias in software can come from learning from biased data, im-
plementation bugs, design decisions, unexpected component in-
teractions, or societal phenomena. Thus, software discrimination
is a challenging problem and addressing it is integral to the en-
tire software development cycle, from requirements elicitation, to
architectural design, to testing, verification, and validation [14].

Even defining what it means for software to discriminate is not
straightforward. Many definitions of algorithmic discrimination
have emerged, including the correlation or mutual information
between inputs and outputs [52], discrepancies in the fractions
of inputs that produce a given output [17, 26, 56, 58] (known as
group discrimination [23]), or discrepancies in output probability
distributions [34]. These definitions do not capture causality and
can miss some forms of discrimination.

To address this, our recent work developed a new measure called
causal discrimination and described a technique for automated fair-
ness test generation [23]. This tool demonstration paper imple-
ments that technique for the group and causal definitions of dis-
crimination in a tool called Themis v2.0 (building on an early proto-
type [23]). This paper focuses on the tool’s architecture, test suite
generation workflow, and efficiency optimizations (Section 2), and
its user interface (Section 3). Section 4 places Themis in the context
of related research and Section 5 summarizes our contributions.

2 THEMIS: AUTOMATED FAIRNESS TEST

GENERATION

Figure 1 describes the Themis architecture and fairness test-suite
generation workflow. Themis consists of four major components:
input generator, cache, error-bound confidence calculator, and dis-
crimination score calculator. Themis uses the input schema of the
system under test to generate test suites for group or causal dis-
crimination. Themis generates values for non-sensitive attributes
uniformly randomly, and then iterates over the values for sensi-
tive attributes. This process samples equivalence classes of test
inputs. Themis later uses the system’s under test behavior on these
sampled subsets of the equivalence classes to compute the discrim-
ination score. Using a cache to ensure no test is executed multiple
times, Themis executes the system under test on the generated tests.
Themis iterates this test generation process, generating more tests
within the equivalence classes, until the confidence in the error
bound satisfies the user-specified threshold, and then outputs the
discrimination score. The final confidence bound is within the spec-
ified threshold, though Themis can also produce its exact measure.

Themis focuses on two measures of discrimination, group and
causal. To help explain the two measures, consider a simple loan

871

mailto:rangell@cs.umass.edu,bjohnson@cs.umass.edu,brun@cs.umass.edu,ameli@cs.umass.edu
http://fairness.cs.umass.edu/
https://youtu.be/brB8wkaUesY
https://doi.org/10.1145/3236024.3264590
https://doi.org/10.1145/3236024.3264590

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou

Th
em

is
 u

se
r

 i
nt

er
fa

ce

Themis engine

input generatorinputs:
- input schema
- type of discrimination
 to measure
- acceptable error
 bound
- desired confidence
 bound

outputs:
- discrimination score
- confidence in error
 bound

system
 under test

I/O
database

cache

error-bound confidence calculator
no

generate more test inputs
to reach confidence

confidence in
error bound
reached?

yes

discrimination
score

calculator

equivalence
classes

input spacenon-sensitive
attribute
generator

sensitive
attribute
iterator

sensitive
attribute

assignment

non-sensitive
attribute

assignment
subsets of

equivalence classes
of test inputs

Figure 1: The Themis architecture and fairness test-suite generation workflow.

program that decides if loan applicants should be given loans. loan
inputs are each applicant’s name, age bracket (≤40 or >40), race
(green, purple), income bracket, savings, employment status, and
requested loan amount; the output is “approve” or “deny”.

Group discrimination is the maximum difference in the fractions
of software outputs for each sensitive input group. For example,
loan’s group discrimination with respect to race compares the
fractions of green and purple applicants who get loans. If 35%
of green and 20% of purple applicants get loans, then loan’s
group discrimination with respect to race is 35% − 20% = 15%.
With more than two races, the measure would be the difference
between the largest and smallest fractions. Group discrimination
with respect to multiple input attributes compares the crossproduct
of the attributes, e.g., for race and age bracket, there are four groups:
[purple, ≤40], [purple, >40], [green, ≤40], and [green, >40].

Software testing enables a unique opportunity to conduct hypoth-
esis testing to determine statistical causation [45] between inputs
and outputs. It is possible to execute loan on two individuals
identical in every way except race to verify if the race causes an
output change. Causal discrimination is the frequency with which
equivalences classes of inputs (recall Figure 1) contain at least two
inputs on which the software under test produces different outputs.
For causal discrimination, each equivalence class contains inputs
with identical non-sensitive attribute values but varied sensitive
attribute values. For example, loan’s causal discrimination with
respect to age and race is the fraction of equivalence classes that
contain a pair of individuals with identical name, income, savings,
employment status, and requested loan amount, but different race
or age, for which loan approves a loan for one but not the other.

Exhaustively testing software can measure its group and causal
discrimination, but it is infeasible in practice. The rest of this
section describes three optimizations (previously proved sound [23])
Themis uses to reduce test suite size. Applying these optimizations
to real-world software (see Section 3), reduced test suite sizes by,

on average, 2,849 times for group discrimination and 148 times for
causal discrimination [23]. The more software discriminates, the
greater the reduction in test suite size.

Sound pruning. The number of possible executions grows ex-
ponentially with the number of input attributes being tested for
discrimination. However, the group and causal discrimination defi-
nitions are monotonic: if software discriminates over threshold θ
with respect to a set of attributes X , then the software also discrim-
inates over θ with respect to all supersets of X (see Theorems 4.1
and 4.2 and their proofs in [23]). This allows Themis to prune its
test input space. Once Themis discovers that software discriminates
against X , it can prune testing all supersets of X .

Further, causal discrimination always exceeds group discrimi-
nation with respect to the same set of attributes (see Theorem 4.3
and its proof in [23]) so Themis can prune its test input space
when measuring both kinds of discrimination: If software group
discriminates with respect to a set of attributes, it must causally
discriminate with respect to that set at least as much.

These observations and their formal proofs allow Themis to
employ a provably sound pruning strategy (Algorithm 3 in [23]).

Adaptive sampling. Themis approximates group and causal dis-
crimination scores through sampling done via iterative test gener-
ation (recall Figure 1). Sampling in Themis is adaptive, using the
ongoing score computation to determine if a specified bound of
error with a desired confidence level has been reached. Themis
generates inputs uniformly at random using an input schema, and
maintains the proportion of samples evidencing discrimination,
computing the bound of error for that proportion.

Test caching. Themis may generate repetitive tests: tests relevant
to group discrimination are also relevant to causal discrimination,
and tests relevant to one set of attributes can also be relevant to
another set. This redundancy in fairness testing allows Themis to
exploit caching to reuse test results without re-executing tests.

872

Themis: Automatically Testing Software for Discrimination ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

3 USING THEMIS TO DISCOVER AND DEBUG

DISCRIMINATION

Themis is a standalone application written in Python. Themis is
open-source: http://fairness.cs.umass.edu/. This paper describes
Themis version 2.0. This section uses a simple example loan im-
plementation (Figure 2a) to demonstrate Themis.

Themis automatically generates tests to detect and measure
group and causal discrimination. Themis’ inputs are a path to
the executable for the software to be tested, an input schema, and
what to measure.

To test loan for discrimination, the user specifies the loan input
schema either via Themis’ GUI (Figure 2b), or via a configuration
file. The input scema includes every input attribute to the software
to be tested and the range of values it can take on, e.g., sex →

{male, female}. Currently, Themis handles categorical inputs, such
as race, income brackets, etc. To specify what to measure, the
user selects group or causal discrimination (or both), a set of input
attributes with respect to which to test, an acceptable error bound,
the desired confidence in that bound, and a maximum acceptable
discrimination threshold. Themis allows saving (and loading) these
settings for later use.

Themis generates and executes a test suite to perform the speci-
fied measurements. If it finds discrimination, the user can choose
to explore that discrimination further. Themis displays the details
of observed group and causal discrimination differently. Figure 2c
shows the group discrimination details Themis found for loan
when asked to measure discrimination with respect to sex, race,
and income. loan group discriminates with respect to income
50.4% of the time (above the 20.0% threshold): loan approved 49.6%
of loan applicants who make between $50,000 and $100,000, and
100% of applicants who make more than $100,000. As this example
illustrates, not all discrimination may be undesirable. Approving
loans based on income may very well be a desirable behavior. It is
up to the Themis user to decide which input attributes need to be
tested for discrimination.

Figure 2d shows the causal discrimination details Themis found
for loan. In addition to the discrimination similar to the group
measurements for income, Themis also found 66.9% causal discrim-
ination with respect to race. Themis lists the tests that exhibit the
causal discrimination. For example, loan approves a loan for a male,
orange candidate with income between $50,000 and $100,000, but
denies a loan for a blue candidate who is otherwise identical. These
causal pairs allow investigating the source of discrimination by trac-
ing through the executions on two (or more) relevant inputs that
exhibit the different behavior, and to potentially debug the problem.

As Themis implements an existing automated fairness test suite
generation technique [23], we now briefly summarize the earlier
evaluation of that technique. Evaluated on a benchmark of eight
open-source software systems and two financial datasets (available
at http://fairness.cs.umass.edu/), automated fairness test suite gen-
eration was effective at discovering both group and causal discrim-
ination. Causal discrimination sometimes captured bias that group
discrimination missed. For example, one of the discrimination-
aware decision-tree implementations [26] trained not to discrimi-
nate with respect to gender exhibited causal gender discrimination
of 11.3%. Learning-based systems can find ways to discriminate

1 if (race is green or orange)

2 if (income > $50, 000)
3 approve

4 else

5 deny

6 else

7 if ($50, 000 < income ≤ $100, 000)
8 deny

9 else

10 approve

(a) Sample loan implementation.

(b) loan input schema.

(c) Themis view of group discrimination results.

(d) Themis view of causal discrimination results.

Figure 2: Themis tests a loan implementation (a) using an input

schema (b) and finds group (c) and causal (d) discrimination.

873

http://fairness.cs.umass.edu/
http://fairness.cs.umass.edu/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou

against certain individuals in one way, and certain other individuals
in another way such that those two discrimination instances cancel
out with respect to group discrimination. Causal discrimination,
however, properly captures such bias. Sometimes, avoiding discrim-
ination against one attribute may increase discrimination against
another. For example, the evaluation showed that training not
to discriminate with respect to gender can lead to a significant in-
crease in discrimination against race. Forcing additional constraints
on machine learning may have unexpected consequences, making
Themis’ discrimination testing even more important. Themis’ opti-
mizations (recall Section 2) reduced test suite sizes by, on average,
2,849 times for group discrimination and 148 times for causal dis-
crimination [23].

4 RELATEDWORK

Discrimination shows up in many software applications, e.g., adver-
tisements [49], hotel bookings [36], and image search [29]. Mean-
while, software is entering domains in which discrimination could
result in serious negative consequences, including criminal jus-
tice [4], finance [43], and hiring [46]. Software discrimination may
occur unintentionally, e.g., as a result of implementation bugs, as
an unintended property of self-organizing systems [5, 10, 12, 13],
as an emergent property of component interaction [6, 11, 16, 33],
as conflicting logic from multiple developers’ changes [7–9, 15] or
as an automatically learned property from biased data [17, 18, 25–
28, 56–58].

Themis focuses on two measures of discrimination, group and
causal. Group discrimination is a generalization of the Calders-
Verwer (CV) score [18], used frequently in prior work on algo-
rithmic fairness, particularly in the context of fair machine learn-
ing [17, 26, 56, 58]. Many other definitions exist. The group dis-
crimination definition can be generalized to rich subgroups [30, 30].
Another defintion defines discrimination by observing that a “better”
input is never deprived of the “better” output [20]. That definition
requires a domain expert to create a distance function for comparing
inputs. Causal discrimination [23] (which Themis measures) goes
beyond prior work by measuring causality [45]. Fairness in ma-
chine learning research is similarly moving toward causal measures
of discrimination, e.g., counterfactual fairness [34]. FairML [1] uses
orthogonal projection to co-perturb attributes, which can mask
some discrimination, but find discrimination that is more likely to
be observed in real-world scenarios.

FairTest [52] uses manually written tests to measure four kinds
of discrimination scores: the CV score and a related ratio, mutual
information, Pearson correlation, and a regression between the
output and sensitive inputs. By contrast, Themis generates tests
automatically and also measures causal discrimination.

Reducing discrimination in machine learning classifiers [2, 17, 26,
30, 31, 51, 56, 58] and selection algorithms [47] is important work
that is complementary to ours. We focus on measuring discrimi-
nation via software testing, not developing methods for removing
it. Themis can be used to manually debug discrimination bugs
and thus remove discrimination. Work on formal verification of
non-discrimination [3] is similarly complementary to our testing
approach.

Causal relationships in data management systems [22, 37, 38]
can help explain query results [40] and debug errors [53–55] by
tracking and using data provenance [39]. For software systems
that use data management, such provenance-based reasoning may
aid testing for causal relationships between input attributes and
outputs. Our prior work on testing software that relies on data
management systems has focused on data errors [41, 42], whereas
this work focuses on testing fairness.

Unlike other automated test generation tools, e.g., Randoop [44]
and EvoSuite [21], Themis processes test results to compute dis-
crimination scores. Prior tools are not designed for measuring
discrimination, instead satisfying testing goals such as maximizing
coverage. This leads to diverse test suites [21, 44]. By contrast, e.g.,
to measure causal discrimination, Themis has to generate pairs of
similar, not diverse, inputs unlikely to be produced by other tools.

5 CONTRIBUTIONS

We have demonstrated Themis, an open-source implementation of
an automated test generation technique [23] for testing software
for causal and group discrimination. Themis employs three opti-
mizations, which significantly reduce test suite size. Such test suite
generation is effective at finding discrimination in open-source
software. Overall, Themis is the first automated test generator for
discrimination testing and serves both as a useful tool for practi-
tioners and a baseline for future research.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation un-
der grants no. CCF-1453474, IIS-1453543, CNS-1744471, and CCF-
1763423.

REFERENCES

[1] Julius Adebayo and Lalana Kagal. Iterative orthogonal feature projection for
diagnosing bias in black-box models. CoRR, abs/1611.04967, 2016.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna
Wallach. A reductions approach to fair classification. In International Conference
on Machine Learning (ICML), Stockholm, Sweden, 2018.

[3] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya Nori. FairSquare:
Probabilistic verification for program fairness. In ACM International Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA),
2017.

[4] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Ma-
chine bias. ProPublica, May 23, 2016. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

[5] Yuriy Brun, Ron Desmarais, Kurt Geihs, Marin Litoiu, Antonia Lopes, Mary
Shaw, and Mike Smit. A design space for adaptive systems. In Rogério de Lemos,
Holger Giese, Hausi A. Müller, and Mary Shaw, editors, Software Engineering for
Self-Adaptive Systems II, volume 7475, pages 33–50. Springer-Verlag, 2013.

[6] Yuriy Brun, George Edwards, Jae young Bang, and Nenad Medvidovic. Smart re-
dundancy for distributed computation. In International Conference on Distributed
Computing Systems (ICDCS), pages 665–676, Minneapolis, MN, USA, June 2011.

[7] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Crystal: Precise
and unobtrusive conflict warnings. In European Software Engineering Conference
and ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (ESEC/FSE) Tool Demonstrations track, pages 444–447, Szeged, Hungary,
September 2011.

[8] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Proactive detection
of collaboration conflicts. In European Software Engineering Conference and
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 168–178, Szeged, Hungary, September 2011.

[9] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Early detection
of collaboration conflicts and risks. IEEE Transactions on Software Engineering
(TSE), 39(10):1358–1375, October 2013.

[10] Yuriy Brun and Nenad Medvidovic. An architectural style for solving compu-
tationally intensive problems on large networks. In Software Engineering for

874

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Themis: Automatically Testing Software for Discrimination ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Adaptive and Self-Managing Systems (SEAMS), Minneapolis, MN, USA, May 2007.
[11] Yuriy Brun and Nenad Medvidovic. Fault and adversary tolerance as an emergent

property of distributed systems’ software architectures. In InternationalWorkshop
on Engineering Fault Tolerant Systems (EFTS), pages 38–43, Dubrovnik, Croatia,
September 2007.

[12] Yuriy Brun and Nenad Medvidovic. Keeping data private while computing in the
cloud. In International Conference on Cloud Computing (CLOUD), pages 285–294,
Honolulu, HI, USA, June 2012.

[13] Yuriy Brun and Nenad Medvidovic. Entrusting private computation and data
to untrusted networks. IEEE Transactions on Dependable and Secure Computing
(TDSC), 10(4):225–238, July/August 2013.

[14] Yuriy Brun and Alexandra Meliou. Software fairness. In Proceedings of the
New Ideas and Emerging Results Track at the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), Lake Buena Vista, FL, USA, November 2018.

[15] Yuriy Brun, Kıvanç Muşlu, Reid Holmes, Michael D. Ernst, and David Notkin.
Predicting development trajectories to prevent collaboration conflicts. In the
Future of Collaborative Software Development (FCSD), Seattle, WA, USA, February
2012.

[16] Yuriy Brun, Jae young Bang, George Edwards, and Nenad Medvidovic. Self-
adapting reliability in distributed software systems. IEEE Transactions on Software
Engineering (TSE), 41(8):764–780, August 2015.

[17] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers
with independency constraints. In IEEE International Conference on Data Mining
(ICDM) Workshops, pages 13–18, December 2009.

[18] Toon Calders and Sicco Verwer. Three naive Bayes approaches for discrimination-
free classification. Data Mining and Knowledge Discovery, 21(2):277–292, 2010.

[19] Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived
automatically from language corpora contain human-like biases. Science,
356(6334):183–186, 2017.

[20] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. Fairness through awareness. In Innovations in Theoretical Computer
Science Conference (ITCS), pages 214–226, August 2012.

[21] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering (TSE), 39(2):276–291, February 2013.

[22] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou.
A characterization of the complexity of resilience and responsibility for
self-join-free conjunctive queries. Proceedings of the VLDB Endowment (PVLDB),
9(3):180–191, 2015.

[23] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing:
Testing software for discrimination. In Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 498–510, September 2017.

[24] Noah J. Goodall. Can you program ethics into a self-driving car? IEEE Spectrum,
53(6):28–58, June 2016.

[25] Faisal Kamiran and Toon Calders. Classifying without discriminating. In
International Conference on Computer, Control, and Communication (IC4), pages
1–6, February 2009.

[26] Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware
decision tree learning. In International Conference on Data Mining (ICDM), pages
869–874, December 2010.

[27] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for
discrimination-aware classification. In International Conference on Data Mining
(ICDM), pages 924–929, December 2012.

[28] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-
aware classifier with prejudice remover regularizer. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pages
35–50, September 2012.

[29] Matthew Kay, Cynthia Matuszek, and Sean A. Munson. Unequal representation
and gender stereotypes in image search results for occupations. In Conference
on Human Factors in Computing Systems (CHI), pages 3819–3828, 2015.

[30] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical
study of rich subgroup fairness for machine learning. CoRR, abs/1808.08166, 2018.

[31] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing
fairness gerrymandering: Auditing and learning for subgroup fairness. In
International Conference on Machine Learning (ICML), Stockholm, Sweden, 2018.

[32] Brendan F. Klare, Mark J. Burge, Joshua C. Klontz, Richard W. Vorder Bruegge,
and Anil K. Jain. Face recognition performance: Role of demographic information.
IEEE Transactions on Information Forensics and Security (TIFS), 7(6):1789–1801,
December 2012.

[33] Ivo Krka, Yuriy Brun, George Edwards, and Nenad Medvidovic. Synthesizing
partial component-level behavior models from system specifications. In European
Software Engineering Conference and ACM SIGSOFT International Symposium

on Foundations of Software Engineering (ESEC/FSE), pages 305–314, Amsterdam,
The Netherlands, August 2009.

[34] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. Counterfactual
fairness. In Annual Conference on Neural Information Processing Systems (NIPS),
December 2017.

[35] Rafi Letzter. Amazon just showed us that ‘unbiased’ algorithms
can be inadvertently racist. TECH Insider, April 21, 2016. http:
//www.techinsider.io/how-algorithms-can-be-racist-2016-4.

[36] Dana Mattioli. On Orbitz, Mac users steered to pricier hotels. The
Wall Street Journal, August 23, 2012. http://www.wsj.com/articles/
SB10001424052702304458604577488822667325882.

[37] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern, Christoph
Koch, Katherine F. Moore, and Dan Suciu. Causality in databases. IEEE Data
Engineering Bulletin, 33(3):59–67, 2010.

[38] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan
Suciu. The complexity of causality and responsibility for query answers and
non-answers. Proceedings of the VLDB Endowment (PVLDB), 4(1):34–45, 2010.

[39] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Bringing provenance
to its full potential using causal reasoning. In 3rd USENIX Workshop on the
Theory and Practice of Provenance (TaPP), June 2011.

[40] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. Causality and explanations in
databases. Proceedings of the VLDB Endowment (PVLDB) tutorial, 7(13):1715–1716,
2014.

[41] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. Data debugging with
continuous testing. In Joint Meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE) NIER track, pages 631–634, August 2013.

[42] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. Preventing data errors with
continuous testing. In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pages 373–384, July 2015.

[43] Parmy Olson. The algorithm that beats your bank manager. CNN Money,
March 15, 2011. http://www.forbes.com/sites/parmyolson/2011/03/15/
the-algorithm-that-beats-your-bank-manager/#cd84e4f77ca8.

[44] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In ACM/IEEE International Conference
on Software Engineering (ICSE), pages 75–84, May 2007.

[45] Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys,
3:96–146, 2009.

[46] Aarti Shahani. Now algorithms are deciding whom to hire, based on voice. NPR
All Things Considered, March 2015.

[47] Julia Stoyanovich, Ke Yang, and HV Jagadish. Online set selection with fairness
and diversity constraints. In International Conference on Extending Database
Technology (EDBT), pages 241–252, Vienna, Austria, 2018.

[48] Eliza Strickland. Doc bot preps for the O.R. IEEE Spectrum, 53(6):32–60, June 2016.
[49] Latanya Sweeney. Discrimination in online ad delivery. Communications of the

ACM (CACM), 56(5):44–54, May 2013.
[50] Rachael Tatman. Gender and dialect bias in YouTube’s automatic captions. In

Workshop on Ethics in Natural Language Processing, 2017.
[51] Philip S. Thomas, Bruno Castro da Silva abd Andrew G. Barto, and Emma

Brunskill. On ensuring that intelligent machines are well-behaved. CoRR,
abs/1708.05448, 2017.

[52] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-Pierre
Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. FairTest: Discovering
unwarranted associations in data-driven applications. In IEEE European
Symposium on Security and Privacy (EuroS&P), April 2017.

[53] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data X-Ray: A diagnostic
tool for data errors. In International Conference on Management of Data
(SIGMOD), 2015.

[54] Xiaolan Wang, Alexandra Meliou, and Eugene Wu. QFix: Demonstrating error
diagnosis in query histories. In International Conference on Management of Data
(SIGMOD), pages 2177–2180, 2016. (demonstration paper).

[55] Xiaolan Wang, Alexandra Meliou, and Eugene Wu. QFix: Diagnosing errors
through query histories. In International Conference on Management of Data
(SIGMOD), 2017.

[56] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. Learning fair classifiers. CoRR, abs/1507.05259, 2015.

[57] Richard Zemel, Yu (Ledell) Wu, Kevin Swersky, Toniann Pitassi, and Cynthia
Dwork. Learning fair representations. In International Conference on Machine
Learning (ICML), published in JMLR W&CP: 28(3):325–333), June 2013.

[58] Indre Žliobaite, Faisal Kamiran, and Toon Calders. Handling conditional
discrimination. In International Conference on Data Mining (ICDM), pages
992–1001, December 2011.

875

http://www.techinsider.io/how-algorithms-can-be-racist-2016-4
http://www.techinsider.io/how-algorithms-can-be-racist-2016-4
http://www.wsj.com/articles/SB10001424052702304458604577488822667325882
http://www.wsj.com/articles/SB10001424052702304458604577488822667325882
http://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beats-your-bank-manager/#cd84e4f77ca8
http://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-that-beats-your-bank-manager/#cd84e4f77ca8

