Power of software

4/22/15

What's going on

* User report are being graded

* 1.0 release due Wed April 29, 11:55 PM
* Presentations Mon April 27

* Final team assessment due May 1

Today’s plan

* Exam review
¢ Evaluations
* Power of computing

What’ll be on the exam?

* testing

* debugging

* working in groups

* reasoning about programs

» power of software (high-level questions only)

Testing

* Know about different kinds of tests
— unit, integration, regression, etc.

* Know about different kinds of coverage
— statement, path, etc.

* Know what’s hard about testing
— GUI, usability, covering all behavior, etc.

Debugging

* Know four kinds of defense against bugs
— make impossible
—don’t introduce
— make errors visible
— last resort: debugging
* Rep invariants
* Assertions

Working in groups

* What’s hard?
— corner cases
— complete specification covers A LOT of behavior
— unless a spec is concise, it’s hard to understand
— precision is hard: language is ambiguous
— communication is important

4/22/15

Reasoning about programs

* Ways to verify your code
— testing, reasoning, proving

* Forward reasoning

* Backward reasoning

* Loop invariants

* Induction

* Practice some examples!

Loop example
Find the weakest precondition
for (int x = 1; x <> y;) {
if (y > x) |

y =y /2
X=2%*xX;

}

// postcondition: x=8, y=8,and x and y are ints

you can also find the loop invariant and decrement function

When and Where?

* Thursday May 7, 3:30 PM

* Hasbrouck Lab Add room 124

C3 on http://www.umass.edu/visitorsctr; default/files/maps/camp p.pdf

Evaluations

* We’'ll take 15 minutes to do evaluations

* They are anonymous and | don’t see them until
(long) after the grades are posted

* | actually use them to improve my teaching

* UMass uses them to decide if | am a good teacher
and whether to let me keep teaching

* UMass cares most about question 11, and also
about questions 12 and 10

Power of Computing

Can you write any program |
describe to you?

Can you write:

A program HALTS? whose input is the
body of a method, and that outputs 0O if
the method enters an infinite loop, and 1

4/22/15

What’s HALTS?(method)?

method () {
print “hello world”;

}

What’s HALTS?(method)?

method () {
for (int x=0; x<5; x++)
print “hello world”;

What’s HALTS?(method)?

method () {
for (int x=0; x<-1; x++)
print “hello world”;

What’s HALTS?(method)?

method () {
while (true);

}

What’s HALTS?(method)?

method () {
int x = 785th digit of T
if (x == 7)
while(true);

What’s HALTS?(method)?

method () {
int x = 785t digit of T
int y = x™X"x"x"x+1;
int z = yth digit of T
if (z == 0)
while(true);

4/22/15

What’s HALTS?(method)?

method () {
int x = 785th digit of T
int y = x™"X"x"x"x+1;

int[] z[] = the yt" through (x+y)th
digits of
if (z ever repeats in Tragain)
while(true);

How about the general case?

* Let’s count programs. How many programs
are there?

* And how many problems are there?
— let’s limit ourselves to simple problems:
* given a set of numbers, e.g., {2, 4, 6}
* oninputi, return 1ifiisin the set, and O otherwise

First 64 programs

* How many of our problems can | solve with 64
programs?
(a) 64
(b) 32
(c)8
(d) 6
(e)2

First 64 programs

* With 64 programs, how large can my sets get
(if I am being compact)
(a) 64
(b) 32
(c)8
(d)6
(e) 2
* Example: with 4 programs, | could cover:

{1 {1}, {2}, {1,2}

Scalability Problem

* To cover subsets of a set of n numbers, | need
2" programs.

* But | only have as many programs are there
are natural numbers.

* That’s exponentially smaller than the number
of problems there are.

Can’t do it for all subsets!

4/22/15

Can HALTS? exist?

* Imagine that you wrote HALTS?
e | will write a new program NALTS?:
NALTS? (Method p) {
if (HALTS? (p)==0) return 1;
else while (true);

Key, run the program on (almost) itself
What is the value of
NALTS? (NALTS?)

What is the value of
NALTS? (NALTS?)

* Two cases:

1.

If NALTS?(NALTS?) goes into an infinite loop,
then

HALTS?(NALTS?)==1, which means that NALTS?
terminates.

So case 1 is impossible.

. If NALTS?(NALTS?) does not go into an infinite

loop, then HALTS?(NALTS?)==0, which means
that NALTS? does not terminate.
So case 2 is impossible.

Conclusion

* The program HALTS cannot exist!
* Many programs cannot exist!

¢ Learn more in CS 401 or CS 601

Zero-Knowledge Proofs

How can | prove to you |
know X without telling you
anything about X?

