
EVALUATING TARGET EVENT
SEQUENCE GENERATION FOR

ANDROID APPLICATIONS

—as a part of completion for Group Paper Presentation for CMPSCI 621—

Casper S. Jensen
Aarhus University, Denmark
semadk@cs.au.dk

Mukul R. Prasad
Fujitsu Laboratories
of America, USA
mukul@us.fujitsu.com

Anders Møller
Aarhus University, Denmark
amoeller@cs.au.dk

Authors:

slide author names omitted for FERPA compliance

mailto:semadk@cs.au.dk
mailto:mukul@us.fujitsu.com
mailto:amoeller@cs.au.dk?subject=

 INTRODUCTION

2

MOTIVATING EXAMPLE :
TAXCALCULATOR

UI MODEL OF A PART OF
TAXCALCULATOR

MOTIVATING EXAMPLE - CONTINUED

WHAT IS THE PROBLEM?
• Automated generation of event sequence for event-driven

applications for higher code coverage

Previous Works:

• Random Black-box testing [1]
• Techniques involving Symbolic Execution [2]

[1] C Hu et al Automating UI Testing for Android Applications in International workshop on Automation of Software Test

[2] Mirzaei et al Testing Android apps through Symbolic execution in ACM SIGSOFT Software Testing noted

RESEARCH QUESTION

Is it possible to generate event sequences for complex
targets that require long event sequence and highly
constrained event parameters?

 KEY IDEA & APPROACH OVERVIEW

8

Automated test generators for event-
driven applications do not cover tests
that:
● Require long event sequence
● Require specific event parameters
● Have complex targets

Automated testing with targeted
event sequence generation for
event-driven applications

10

Solution

Collider
(A Targeted Event

Sequence Generation Tool)

Inspirations:

● Line reachability problem for C programs [3]
● A Model-based testing technique [4]

[3] K. Ma et al, Directed Symbolic Execution, In Proc. 18th International Static Analysis Symposium, 2011
[4] S. Arlt et al, Lightweight Static Analysis or GUI Testing, In Proc. 23rd IEEE International Symposium on Software Reliability Engineering,
2011

HIGH-LEVEL VIEW OF
COLLIDER

Collider

Android
Application

 UI Model

 Set of Targets

Test Cases for
Targets

UI MODELS FOR EVENT-DRIVEN
APPLICATIONS

UI Model of an event-driven application is a collection of event-
handler methods that attach to GUI widgets

Event-handler registration
=

(GUI Widget Object, Event Kind, Event-
handler Method)

UI MODELS FOR EVENT-DRIVEN
APPLICATIONS (CONT.)

• M = (S, s0, E, T)

finite set of abstract states

initial state

finite set of event-handler registrations

transition relation

14

APPROACH OVERVIEW
1. Symbolic Summarization Phase (Symbolic analysis)

1. Input: executable android application, event-handlers

2. Output: event-handler summary  

2. Sequence Generation Phase (Backward exploration)

1. Input: event-handler summary, UI model

2. Output: test case

 THE PROCESS

15

[5]

[5] Wikipedia: Concolic testing, https://en.wikipedia.org/wiki/Concolic_testing

1. SYMBOLIC SUMMARIZATION PHASE
• Goal: to produce event handler summary for each event handler

• Event handler summary = a set of path summaries for all the execution paths within
the event handler code

• The summary is computed by performing concolic testing

https://en.wikipedia.org/wiki/Concolic_testing

< Example code written in C >

x=0
y=0

(x == 100) {

• Goal: to produce event handler summary for each event handler
• Event handler summary = a set of path summaries for all the execution paths within

the event handler code

• The summary is computed by performing concolic testing

1. SYMBOLIC SUMMARIZATION PHASE

• Goal: to produce event handler summary for each event handler
• Event handler summary = a set of path summaries for all the execution paths within

the event handler code

• The summary is computed by performing concolic testing

< Example code written in C >

x=0
y=0

(x == 100) {

if

x ≠ 100

1. SYMBOLIC SUMMARIZATION PHASE

< Example code written in C >

x=0
y=0

(x == 100) {

if

x ≠ 100

if

x = 100

x=100
y=0

z = 0

x ≥ z

• Goal: to produce event handler summary for each event handler
• Event handler summary = a set of path summaries for all the execution paths within

the event handler code

• The summary is computed by performing concolic testing

1. SYMBOLIC SUMMARIZATION PHASE

< Example code written in C >

x=0
y=0

(x == 100) {

if

x ≠ 100

if

x = 100

x=100
y=0

x=100
y=51

z = 0 z = 102

x ≥ z x < z

• Goal: to produce event handler summary for each event handler
• Event handler summary = a set of path summaries for all the execution paths within

the event handler code

• The summary is computed by performing concolic testing

1. SYMBOLIC SUMMARIZATION PHASE

2. SEQUENCE GENERATION PHASE
• Goal: to generate a test case for each given target

 

• Goal: to generate a test case for each given target

• Partial sequence = (a path summary + an abstract state)

•

 

Worklist
Partial sequence 1
Partial sequence 2

. . .

2. SEQUENCE GENERATION PHASE

• Goal: to generate a test case for each given target

• Partial sequence = (a path summary + an abstract state)

•

•

 

Worklist
Partial sequence 1
Partial sequence 2

. . .

2. SEQUENCE GENERATION PHASE

 1: Initialize the worklist
 2: while (worklist is not empty
 3: identify anchors
 4: for each anchor,
 5: identify connector sequences
 6: construct a new partial sequence
 7: if (new partial sequence == test case)
 8: return new partial sequence
 9: else
10: add new partial sequence to Worklist
11: Reprioritize Worklist
12: return false

 INITIALIZE THE WORKLIST
• path summary that triggers the target

• abstract state which has an outgoing transition to the path summary

Worklist

Partial sequence (a path summary to target, INCOME)

• path summaries that affect the path condition of the partial
sequence are identified as anchors.

 IDENTIFY ANCHORS

 IDENTIFY ANCHORS

Worklist Anchor = ?

• path summaries that affect the path condition of the partial
sequence are identified as anchors.

 IDENTIFY ANCHORS

Worklist Anchor = ?

• path summaries that affect the path condition of the partial
sequence are identified as anchors.

• For each given anchor, a set of connector sequences that
lead from the anchor to the partial sequence is
extracted by using the UI model

Worklist

 IDENTIFY CONNECTOR SEQUENCES

• For each given anchor, a set of connector sequences that
lead from the anchor to the partial sequence is
extracted by using the UI model

Worklist

New Partial Sequence =  
(Anchor, Connector, original partial
sequence)

 IDENTIFY CONNECTOR SEQUENCES

 IDENTIFY CONNECTOR SEQUENCES
• For each given anchor, a set of connector sequences that

lead from the anchor to the partial sequence is
extracted by using the UI model

Worklist

New Partial Sequence =  
(Anchor, Connector, original partial
sequence)

New Partial Sequence

 RE-PRIORITIZE PARTIAL SEQUENCES
• Some of partial sequences are less important than the others

• E.g. multiple anchors that affect the same path condition, which result in multiple
new partial sequences in the wordlist

• We can decrease the priority of any redundant partial sequences

 EVALUATION & RESULTS

32

 EXPERIMENTAL SETUP:

33

concolic executionCollider

Android emulator by Android SDK

symbolic execution

Symbolic Java PathFinder

APPS

Baseline tools

Simple Crawler

Monkey provided by
Android SDK

Q1: Was the algorithm able to reach challenging targets?

34

Q2: Does use of anchors & connectors have an effect on
ability to reach targets, when compared to simple backward

Breadth-First-Search technique?

35

Q3: Does prioritization and ignoring of less important
event sequences have any effect at all?

36

WITH
PRIORITIZATION

WITHOUT
PRIORITIZATION

TARGETS
REACHED 46 25

RUNNING TIME
FOR SEQUENCE
GENERATION

45 seconds 2.5 hours

 DISCUSSION QUESTIONS

37

38

QUESTION 1

We see some of the challenging targets were
reached. What happens to the missed targets? Why
were they missed? What are the necessary steps?

Possible Answer: The algorithm supports symbolic reasoning of
numeric values and booleans, resulting in imprecise treatment of, for
example, strings and object. Improvisationn in. this field might help us reach
the missed targets

39

QUESTION 2
Authors use handwritten UI models for each application for
symbolic generation. Automated UI generation models
weren’t present at the time. Would human effort mean
presence of errors? This also reduces the feasibility of scaling
the evaluation to a larger number of benchmarks.

Possible Answer: One possible alternative would be using automated UI-model
generation technique[6]. Would that be effective enough?

[6]: Wei Yang et al., A Grey-Box Approach for Automated GUI-Model Generation of Mobile Applications, FASE'13
Proceedings of the 16th international conference on Fundamental Approaches to Software Engineering

40

QUESTION 3
Can we use Collider for other types of event-
driven applications?

Possible Answer: the authors believe that their approach might also
be applicable for other types of event-driven programs such as
JavaScript web applications and desktop GUI applications in a case that
event-handlers are smaller in web or GUI applications

41

QUESTION 4
Can Collider be used to generate test cases for all
types of targets?

Possible Answer: In a case that target is simple, collider’s
execution time is greater than existing approaches

42

QUESTIONS 5

Does this technique work well with all
Android Applications?

 Possible Answer: There was one application (“TippyTipper”) which was
evaluated by the authors in the paper which did not respond very well. It took
30 minutes for the event sequence generation phase to complete for this
application while for other four took few seconds. This was possibly because
of lot of connectors between events. Such applications might take a lot of
time.

43

QUESTION 6

Can we apply this technique to other mobile
application platforms such as IOS and
windows?

Possible Answer: the authors have mentioned that their approach
works well with small number of long event sequences which is the
case in mobile applications. Hence ,any mobile application that satisfies
this condition, ex:- iOs/windows should work well with the algorithm
is our assumption.

