
Automatic Recovery from
Runtime Failures

Authors:
Antonio Carzaniga, Alessandra Gorlay, Andrea Mattavelli,

Nicol`o Perino, Mauro Pezz`e

slide author names omitted for FERPA compliance

The Approach

Automatic
Workaround+ = Technique to make

applications
resilient to failures.

The automatic selection and
execution of a
correct variant of a library
method, to avoid a failure of
a faulty one.

A faulty application
functional in the field
while the developers
work on permanent
and radical fixes.

Rewriting
Rules +

A knowledgeable user writes
up code rewriting rules that
tell the system how to use
other functions to mimic
another function

Intrinsic
Redundancy

Many variants
of the same
functionality in
libraries

Assumptions:
1. The library comes with a specification of the equivalence

between the operations it supports
2. Failures are somehow detected and reported

Research Questions

1. Is modern software intrinsically redundant and if so to what extent?
2. By executing variants of methods, can we reduce the amount of

runtime failures in a Java application that uses a library?
3. Does using automatic workaround increase the amount of overhead

and prolong the time it takes for an operation to run?

Contribution
1. A new generic technique that uses the redundancy of libraries to attempt to

automatically recover from runtime exceptions
2. ARMOR, a system that allows for automatic recovery in java applications by

taking advantage of the natural redundancy of libraries
3. Code-rewriting rules for the JodaTime and Guava libraries. These could be

used with their system to provide automatic recovery when using those
libraries in your application

Key Idea
If an automatic workaround tool can find variations of procedures from 3rd party
libraries and implement them in runtime to reduce total application failures, then
developers will be able to deploy their working applications with small bugs and
will be able to identify and fix the bugs as the application is being used by their
users.

For example, Joe Schmo deploys shopping web app. Automatic workaround tool finds error in
changeItem(), changeItem() is replaced in runtime with deleteItem() and addItem(), then reports error to
Joe Schmo. Joe Schmo has happy customers while he fixes the bug.

Preprocessing
1. Finding Roll Back Areas (RBAs) to reset the application to and try other

similar functions, if the previous implementation fails.
2. Injects code that creates RBAs, catches exceptions, and calls other functions

if original one fails.
3. Compiles modified source code and variants

Only works with unchecked exceptions. Checked exceptions are still thrown.

Runtime
● The only changes at runtime will be the creation of the checkpoints, proxying

of the methods, and rolling back to checkpoints and running other variants
● RBAs can be either snapshots or a lazy change log
● Runtime overhead varied from 2% to 194% increase

○ This overhead is mainly due to all of the try/catch blocks and proxy
methods

Example
Developer 1

● Uses Apache HTTP Client Library
● Deploys production ready application with

small bugs and automatic workaround
tool.

● Tool finds methods with errors, and
replaces methods with library variants.

● Fixes one bug at a time while application
is still in production and useable.

● Takes note of rewriting rules and uses
them for future applications using Apache
HTTP Client Library.

Developer 2

● Does not use library.
● Does not deploy code because they want

to fix bugs.
● Have to write their own custom tests for

their custom methods.
● Fixes bugs all at the same time before

deploy.
● Has to create new rewriting rules for each

future application.

Summary of the Evaluation
● The objective of this evaluation is to determine whether the technique is effective in making applications more resilient to faults,

and efficient enough to be practically usable.
● ARMOR is successful with between 19% and 48% of the mutants. These are cases in which ARMOR is completely successful,

meaning that the application terminates successfully and with the correct output despite the presence of a failure-inducing fault.

Guava
(Library)

Caliper Closure Carrot2

JodaTime
(Library)

Fb2pdf

Identify equivalences
between sequences of
calls in libraries.

Write “code-rewriting
rules” based off
equivalences

Run ARMOR to find
RBAs and to produce
variants

Initial Analysis

Mutation Analysis

Use Major framework to
inject faults into Guava
and JodaTime libraries

Execute all applications
with mutants and
ARMOR

Discussion Question 1
● We worry that this technique will only be efficient in very few cases as evidenced by 194% runtime overhead in

Closure. How can we reduce the overhead to make this technique more efficient?

Discussion Question 2
● This technique currently only works for Java applications. Are there any changes that need to be made to this new

technique to make it applicable to other languages or is it possible that it would work fine for other languages as it is?

Discussion Question 3
● The technique right now is only useful for code on the surface and fails as the methods are more embedded in the

code under layers of inheritance. How can this new technique be modified so that it can reach as far in the code as
possible?

Discussion Question 4
● A big part of this new technique is its dependence on intrinsic redundancy. How could developers creating redundant

methods help the quality of code?

Discussion Question 5
● An important goal of software development is to ship a working product. How could this technique help ensure a

quality product, that is quickly released to customers?

Thanks for listening!

