Refactoring with Synthesis

Authors: Veselin Raychev, Max Schafer, Manu Sridharan,
Martin Vechev

slide author names omitted for FERPA compliance

Research Questions

® (Can the refactoring process be simplified?
® (Can the refactoring process be made to be more flexible?

® (Can automated refactoring be used to apply refactorings to the whole program based on an
example refactoring by the developer rather than forcing a developer to follow a pre-set refactoring?

Solution

® Base the refactorings off of changes made by the user rather than having the user use refactorings
presented to them by the IDE

Main Contributions

1. A new interface for refactoring tools, where the user indicates the desired transformation with
example edits and the tool synthesizes a sequence of refactorings that include the edits.

2. A novel technique for synthesizing refactoring sequences via heuristic search over pruned
programs.

3. An implementation RESYNTH, whose architecture minimizes the effort required to add new
refactorings.

4. Aninitial evaluation of RESYNTH, showing it can synthesize complex refactoring sequences for real
examples.

Resynth

e Same interface for each refactoring process
e A sequence of refactorings becomes much easier
e The refactorings are applied as a unit

e Adding a new refactoring is easier and cleaner

1 public class Account {
private String name;

2

3

4 wvoid printOwing() {
5 printBanner() ;

6

System.out.println("name: " + name);
7 System.out .println("outstanding: " +

B getOutstanding()) ;
5 3}

10

11 private double getDutstanding() {
12 s

13}

14

15§ private void printBamnner() {

16 L

it}

18}

(a)

19 public class Account {
20 private String name;

void printOwing() {
printBanner () ;

2
23
24 printDetails(getOutstanding());
25}

26

217 private void printDetails(double outstanding) {

28 System.out.println("name: " + name);

] -Sgnt&n.unt.printlnfhalnnnt: "% nutntandingi;
w ¥

i1

32 private double getOutstanding() {

3 "

M}

36 private void printBamnner() {
37 fra

3 }

19}

(b)

Figure 1. Example of a complicated refactoring that cannot be achieved in a single step in current IDEs; changes highlighted.

The Approach

The heart of RESYNTH is a search strategy for discovering appropriate refactoring
sequences based on a small number of user edits. RESYNTH takes the following
approach:

Abstract Syntax Tree

LIEULT &y WD

j .
r -
.
€ . -
f & ;
. ;
. :
Ll '
) * i
.
: \
: ;
: 2
;)
i .
; ;
9 o
: ;
: .
, -
L X Y-
. ;
- .'-
i ars

ASTof x *y +7 AST of f{)+7

Figure 3. Two ASTs and the change {¢;, cm) between them. The
change is captured with dotted lines.

Capture Program Change

e Create an AST for the original code

e Generate an AST for the changed code

e Capture the difference between the two AST’s and get rid of the rest of the AST as repeated
sections of the AST is redundant in this case

1. Extract Change

Synthesize Local Refactoring Sequence

e Generate search space of AST’s using different refactorings
e A* search through the refactorings to find the best way from the original AST to the user edited AST
e Use edit distance or expression difference as a heuristic for the A* search

P;
lu "
CJ' n "L

T
T

2. Synthesize Local 5
Refactoring Sequence r,

Extrapolate Full Sequence of Refactorings

e Perform extraction sequence on local refactorings
e Input local refactoring pattern into full sequence of patterns that can use same refactoring as laid out
in example by user

r "
Pr Pm Pf
ju G
-I'_'I —.-Ft Em

e

3. Extrapolate to a Sequence
of Full Refactorings r

Example of Synthesis Algorithm

3. perform the sequence {rename T e) on the full program

P FPin ¢ P

float T, 5; float T, 5; float p, s;

T = (atb+c)/2 0. imtial mput: wser does partal rename *T=(atb+c)/2 B (atbt+c) /2
g=T#(T-a)*(T-b)*(T-c); g = p*(p-a)*(T-b)*(T-c); g =p*(p-a)*(p-b)*(p-c);
return Math.sqrt(s); return Math.sqrt(s); return Math.sqrt(s) ;

il.mmput:c,:P;".,F‘m::-clgp. and cm:Pm".,F.ﬂcmgle
em © Py by Lernma 3.3
C; " > Cm 1
=T*({T-)#* 2. synthesize sequence: local rename T o p =p* [P_}a:

Figure 5. Example of synthesizing a refactoring sequence. Initially (stage 0), the user performs part of the rename (the user
change is highlighted in both programs). Then ¢; and ¢, are computed (stage 1). Then, a sequence of one local rename is
discovered (stage 2). Finally, the rename is applied to the full program (stage 3).

Related Work

While BeneFactor and WitchDoctor also infer refactorings from user edits, they differ from our system in
that:

(1) they do not require the user to indicate a refactoring is occurring
(2) they cannot perform transformations requiring a sequence of refactorings.

e While (1) can be an advantage for novice users, requiring the user to indicate the start of the
refactoring enables the tool to discover more complex sequences, and allows for performing several
independent refactorings “atomically.”

Evaluation

e Some examples of refactoring and how ReSynth worked on them.

e While Eclipse provides an implementation of INTRODUCE PARAMETER, it fails to handle this
example.

Example steps | Source
ENCAPSULATE DOWNCAST 3 literature [6]
EXTRACT METHOD (advanced) 4 literature [6]
DECOMPOSE CONDITIONAL 6 literature [6]
INTRODUCE FOREIGN METHOD 2 literature [6]
REPLACE TEMP WITH QUERY 3 literature [6]
REPLACE PARAMETER WITH METHOD | 3 literature [6]
Swar FIELDS 3 literature [32]
SwaPr FIELD AND PARAMETER 3 literature [25]
INTRODUCE PARAMETER 6 Stack Overflow”

Table 1. Realistic examples used to test RESYNTH.

Stress Testing Using Benchmarks

e Used additional testing by generating java classes with a few methods and variables
e Then applied edits to these class
e Used the tool to try to preserve the edits.

Dataset
Metric Real | Synthetic
Number of tests 9 100
Avg. number of trees searched 87 3752
Avg. number of successors in a search 1296 105310
Avg. search time 0.014s 1.629s
Avg. Eclipse refactoring time 2.953s 1.654s
Refactoring sequence length
1 refactoring 0 2
2 refactorings 1 45
3 refactorings 5 7
4 refactorings 1 15
5 refactorings 0 3
6 refactorings = 2
7 refactorings 0 9
8 refactorings 0 0
9 refactorings 0 1
Failure to find sequence
after 20000 searched trees 0 16

Table 2. Results for our refactoring sequence search. The
A" heuristic function weights (see Section 3.4) were a; =
0.125 and a; = 0.25.

Meiric Search space limit (# trees)

20,000 | 100,000 | 500,000
Num. failed tests 16 15 9
Avg. number of searched trees 3752 15500 64392
Avg. search time 1.629s 7.802s | 34.473s

Table 3. Success rate on synthetic benchmarks with differ-
ent search bounds. Tested with a, = 0.125 and a, = 0.25.

Search Parameters | Real Examples Synthetic Tests
Edit Expr. Num. Avg, Num. Avg,
distance distance | failed num. failed num.
weight weight tests searched | tests searched
fy Qo trees trees
0.000 0.000 2 5306 32 6943
0.000 0.125 1 3076 26 5373
0.000 0.250 0 184 26 5348
0.000 0.500 0 119 24 4537
0.000 1.000 1 2350 16 3316
0.125 0.000 0 1248 25 5065
0.125 0.125 0 115 19 4642
0.125 0.250 0 87 16 3752
0.125 0.500 0 122 15 3396
0.125 1.000 0 1154 14 3243
0.250 0.000 0 291 21 4456
0.250 0.125 0 281 18 3885
0.250 0.250 1 223 18 3694
0.250 0.500 1 153 17 3485
0.250 1.000 1 623 14 3516
0.500 0.000 2 358 26 4481
0.500 0.125 1 189 23 4401
0.500 0.250 1 158 22 4274
0.500 0.500 1 158 20 4114
0.500 1.000 1 465 18 40092
1.000 0.000 2 3033 24 4704
1.000 0.125 1 641 24 4796
1.000 0.250 1 637 25 4786
1.000 0.500 1 477 26 4704
1.000 1.000 1 768 22 4490

Table 4. Search space with different parameters of the
heuristic function for the A* search (When a; = az = 0,
the search is a breadth-first search.)

User Study

e We recruited six participants: two undergraduate students, three graduate students, and one
professional.

e Brief demonstration of RESYNTH

e We gave each participant a set of three refactoring tasks

e Asked them to complete the tasks using either RESYNTH, Eclipse’s built-in refactorings, or manual
editing.

Discussion Question

What is the scalability of this tool within the code?

Discussion Question

What is the scalability of this tool within the code?

This depends on your definition of scalability. If you have really long code with many decently simple
enough refactorings, there is no reason why this tool should not work on this. However, the more
complicated the refactorings get, the harder it will be for this tool to perform, as the search space for the

A* algorithm will grow to be large.

Discussion Question

Could this approach be used to tackle other large scale code changes?

Discussion Question

Could this approach be used to tackle other large scale code changes?

We believe yes. While the resynth tool deals directly with refactorings and probably could not be extended
to other code changes, the approach as a whole of finding the difference between program AST’s and
performing an A* search to derive some sort of desired property out of the code could be useful in other

areas of computer science.

Discussion Question

Would this tool help to speed up the development process?

Discussion Question

Would this tool help to speed up the development process?

Yes, this tool can speed up the process quite a bit as it can eliminate time spent on long refactorings of
code. Even just extracting out repeated lines of code into small methods can take time out of
development, and this tool can find and correct all those cases that you may spend time looking for and

correcting.

Discussion Question

Is there a potential this tool could over-refactor the code and cause a nuisance?

Discussion Question

Is there a potential this tool could over-refactor the code and cause a nuisance?

Yes, if a user is not careful he may make a pretty generic change or not see parts of code that he does
not want changed and accidentally cause refactorings in the code that he did not want.

Discussion Question

Only 6 people were used in this user study. Is that enough to judge the usefulness of the tool?

Discussion Question

Only 6 people were used in this user study. Is that enough to judge the usefulness of the tool?

This is just a personal opinion, however we feel that no it is not enough people. 6 people is just too small a
number of people trying out a tool to really see if it will go to good use. There is a huge amount of diversity
in coding styles and preferences in computer science and this can’t really be represented by so few an
amount of people. Also, we feel it would be good to have a few more professionals test out this tool, as it
could give a more accurate representation of its usefulness.

