
Modular and Verified Automatic
Program Repair

Research by Francesco Logozzo and Thomas Ball

Microsoft Research, Redmond (2012)

slide author names omitted for FERPA compliance

Introduction
● All code is buggy!

○ What can be done about catching bugs at design time?

● Static analyzers passively provide reports or warnings

● Developers may defer bug finding and other related tasks

○ What if suggested repairs for warning were provided?

.NET CodeContracts for Visual Studio

● Is primarily an in-line assertion library

● Provides possibility to Design by Contract

● Has a static checker called ccchecker

cccheck

● Squiggly lines bring up warnings

● Invariant detection

● Can it do more?

What is a Modular Program Verifier?
● Decomposes verification from the level of the entire program to

individual methods

● Derives semantics from inferred and given contracts:

○ Preconditions

○ Postconditions

○ Invariants

● Contracts are essential for scalability and documentation

Researcher’s Vision
● Automatically suggest verified repairs for warnings

● Speculative analysis using knowledge from static analysis

● Tools knows things the developer doesn’t?

○ Deep understanding of program

○ On-the-fly, without developer digging in

User

Code

Repair
Algorithm

Static
Analysis

Input Contracts

WarningsSuggested
Fixes

Cccheck
● Input: .NET bytecode

● Performs a series of static analyses:

○ Constructs a control flow graph

○ Checks contracts

○ Runs semantic analyses

What warnings will cccheck show you?
● Ranks warnings by severity

● Exposes common errors (other than explicit Contract Violations):

○ Buffer Overflow / Underflow

○ Null Pointer

○ Wrong Conditionals

○ Arithmetic Overflow

○ Floating Point Comparisons

○ Other well-studied, detectable errors

What Is a Code Repair?
● Some definitions tied to results of a test suite

○ Why run code?

○ Is your test suite complete?

● Verified Repair: reduces the number of bad executions in the program

while preserving or increasing the number of good runs

○ Good run: Meets all specifications of the program

○ Bad run: Violates a given specification

Suggesting fix for two-decades-old bug
Source: Microsoft Research (demo video)

Research Questions
● What constitutes a valid repair?

● Can suggested repairs be generated fast enough to be used in active

development (i.e., in an IDE)?

● For how many of the warnings generated by cccheck can potential

repairs be found?

● What kind of repairs can be produced automatically?

● How precise will the repairs be? Will they find bugs in actual code

libraries?

Contributions
● Define the notion of a verified repair

○ Abstractions of trace semantics

● Propose algorithms that can be easily adapted and implemented

○ Sound, program-specific code repairs

● Show that the analysis and repair inference process is fast

○ Proposes repairs for over 80% of warnings

Typical Warnings and their Repairs

A Few Simple Examples

Repair by Contract Introduction

● Cccheck detects a possible null-dereference and a buffer underflow in P

● It suggests the precondition a != null and initializing i to 1.

Off by One / Initialization Errors

● Cccheck detects a buffer overflow

● Suggests either changing the index to 0 or allocating a buffer of length

2 or more.

Guards and Conditional Statements

● Cccheck notices that the program will crash when c is null, and that c

is null in all executions (a definite error)

● Suggests flipping the guard or removing the branch altogether.

So How Does It Work?

Trace Semantics
● P is the original program, P’ is the repaired program

● Σ : set of states, and τ
P

 ∈ ℘(Σ × Σ) is a nondeterministic transition relation

● For a state s ∈ Σ, s(C) denotes the basic command associated with the

state

● Traces are sequences of states

● B

P

: the set of bad runs of P

● G

P

: the set of good runs of P

P P’

BP
BP’GP GP’

Verified Repair
● Assertion abstraction α

A

 removes all states but those referring to

assertions

● δ
P,P’

 denotes a repair that transforms program P to program P’

● If α
A

(G

P

) ⊆ αδ
P,P’

 ◦ α
A

(G

P’

) and α
A

(B

P

) ⊃ αδ
P,P’

 ◦ α
A

(B

P’

), then we say that

δ
P,P’

 is a verified repair for P and that P’ is an improvement of P

● Denies P as an improvement, since the number of bad traces should

strictly decrease

● For B

P

 and G

P

 we use the bad and good runs of P inferred by cccheck

Program Repairs in Practice
● Cccheck has four main phases:

○ Assertion Gathering

○ Fact Inference

○ Proving Assertions

○ Report Warnings and Suggest Repairs

Assertion
Gathering

Fact
Inference Proving Report

Warnings

Proving Assertions
● There are four possible outcomes:

○ True: Assertion holds for all executions reaching it

○ False: Assertion fails for all executions reaching it

○ Bottom: No execution will ever reach the assertion

○ Top: We do not know; assertion was violated sometimes or the

analysis was too imprecise

 ✓ ᭺ ⊤ ⊥

Generating Repairs
● On average, a method is analyzed in 156 ms

● Cccheck attempts to generate repairs for false and top outcomes

● Program repairs can be inferred in two ways:

○ Backwards must analysis

○ Forwards may analysis

Backwards Analysis

● Starts with a failing assertion e and analyzes backwards until it finds a

point where the preconditions of e might not hold

● Able to infer repairs for contracts, initializations and guards

Forwards Analysis
● Infers repairs from the abstract domains

● Works for off-by-one errors, floating point comparisons, and

arithmetic overflows

So How Well Does It Work?

Results Breakdown

● Standard libraries with validated asserts (true, bottom) and warning

(false, top)

● Repairs (many to many) and asserts with at least one repair (success)

Results of IDE Integration
● Cccheck was integrated into Visual Studio

● With no caching, cccheck:

○ Analyzes 6+ methods per second

○ Infers 7.5 repairs per second

● With caching:

○ Performance was increased tenfold

● Conclusion: the approach is efficient enough to be used in an IDE

What Makes This Research Different?
● Does not rely on known failing test

● The program does not need to be run

● Property-specific repairs

● Handles loops and infinite state spaces

● More general fixes than symbolic execution

● Precise yet universal definition of code repair

Related Work
● Automated program repair field, which is very active

● Eclipse Fix-it can repair syntactically wrong programs

● GenProg, PAR, ARMOR, Staged Program Repair

● Speculative analysis tools like Quick Fix Scout which finds

previous fixes from other code

Summary
● Using warnings generated from modular static analysis, it is

possible to automatically generate repair suggestions at

design time

● This process is fast, consistent, and precise enough to catch

bugs in shipped code

● Verified repair: removes bad runs while possibly increasing

good runs

Discussion Questions
● What types of bugs can verified automatic program repair fix well?

● What types of bugs might it not fix well?

● Would this type of repair suggestion be useful at design time?

● Could simple errors eventually be corrected without the input of the

programmer (like AutoCorrect in MS Word)?

More Discussion Questions
● How could this system be extended in the future to find more

complex and abstract errors, or to help with other common

programming tasks?

● If a test suite is available, how should it be incorporated into the static

analysis of cccheck?

● Can it actually make you, the developer, actually understand your

program better (more deeply)?

Sources
http://research.microsoft.com/pubs/170385/res0099-logozzo.pdf

http://research.microsoft.com/en-US/projects/contracts/cccheck.pdf

http://research.microsoft.com/pubs/138696/Main.pdf

https://people.cs.umass.edu/~brun/class/2015Fall/CS521.

621/lectures/20151021SpeculativeAnalysis.pdf

