Modular and Verified Automatic
Program Repair

Research by Francesco Logozzo and Thomas Ball
Microsoft Research, Redmond (2012)

slide author names omitted for FERPA compliance

Introduction

e All code is buggy!
o What can be done about catching bugs at design time?

e Static analyzers passively provide reports or warnings

e Developers may defer bug finding and other related tasks
o What if suggested repairs for warning were provided?

NET CodeContracts for Visual Studio

static int BinarySearch(int[] array, int value)

{

Contract.Requires(array != null);

[I

e [s primarily an in-line assertion library
e Provides possibility to Design by Contract

e Has a static checker called ccchecker

cccheck

static int BinarySearch(int[] array, iy

{

oo Ask Clousot

Code guestions | Value inspectar | Search

int index, mid;
var inf = 0; Seate @ne 19
var sup = array.length;

while (inf <= sup)

{

if (value == mid) return index;
Squiggly lines bring up warnings
Invariant detection

Can it do more?

What is a Modular Program Verifier?

Decomposes verification from the level of the entire program to
individual methods

Derives semantics from inferred and given contracts:
o Preconditions

o Postconditions

o Invariants

Contracts are essential for scalability and documentation

Researcher’s Vision

e Automatically suggest verified repairs for warnings
e Speculative analysis using knowledge from static analysis
e Tools knows things the developer doesn’t?

o Deep understanding of program

o On-the-fly, without developer digging in

Contracts

N

Input

Static
Analysis

Suggested Repair

Fixes Algorithm JAASEEER

Cccheck

e Input: NET bytecode

e Performs a series of static analyses:
o Constructs a control flow graph
o Checks contracts
o Runs semantic analyses

What warnings will cccheck show you?

e Ranks warnings by severity

e Exposes common errors (other than explicit Contract Violations):
Buffer Overflow | Underflow

Null Pointer

Wrong Conditionals

Arithmetic Overflow

Floating Point Comparisons

O O O O O O

Other well-studied, detectable errors

What Is a Code Repair?

e Some definitions tied to results of a test suite
o Why run code?
o Is your test suite complete?

e Verified Repair: reduces the number of bad executions in the program
while preserving or increasing the number of good runs

o Good run: Meets all specifications of the program

o Bad run: Violates a given specification

static int BinarySearch(int[] array, int

{

Contract.Requires(array != null);

int index, mid;
var inf = 8;
var sup = array.Length - 1;

while (inf <= sup)

{

index = (inf + sup) [/ 2;

Qgusct Code Fx index = inf = (s

mid = ar. uy [SiacA g,

B ow M = C W O o |

un

h

if (value == mid) return index;
if (mid < value) inf = index + 1;
else sup = index - 1;

~J

o

}

,
9
L
2
e
3
LS
5
V4
-
iy |
’.
“
¥
4
’,
£
2
PV
- |
-

return -1;

N = ® W

W w

Suggesting fix for two-decades-old bug

Source: Microsoft Research (demo video)

Research Questions

What constitutes a valid repair?

Can suggested repairs be generated fast enough to be used in active
development (i.e., in an IDE)?

For how many of the warnings generated by cccheck can potential
repairs be found?

What kind of repairs can be produced automatically?

How precise will the repairs be? Will they find bugs in actual code
libraries?

Contributions

e Define the notion of a verified repair
o Abstractions of trace semantics

e Propose algorithms that can be easily adapted and implemented
o Sound, program-specific code repairs

e Show that the analysis and repair inference process is fast

o Proposes repairs for over 80% of warnings

Typical Warnings and their Repairs

A Few Simple Examples

Repair by Contract Introduction

void P(int[] a) {
al[i - 1] = 110;
}

void P’ (int[] a) {
Contract.Requires(a != null);
for (var i = 1; i < a.Length; 1i++)
a[i - 1] = 110;

® Cccheck detects a possible null-dereference and a buffer underflow in P

e [t suggests the precondition a = null and initializing i to 1.

Off by One / Initialization Errors

string GetString(string key) {
var str = GetString(key, null);
if (str == null) {
var args = new object[1];
args[l] = key; // (*)

throw new ApplicationException(args);

}

return str:

® (Cccheck detects a buffer overflow

e Suggests either changing the index to 0 or allocating a buffer of length
2 or more.

Guards and Conditional Statements

// Original code
if (¢ == null) {

var r = new Rectangle(®, 0, c.Width);
}

// A Suggested Repair
1f (c != null) {

var r = new Rectangle(®, 0, c.Width);

}

® Cccheck notices that the program will crash when c is null, and that c
is null in all executions (a definite error)
e Suggests flipping the guard or removing the branch altogether.

So How Does It Work?

Trace Semantics

P is the original program, P’ is the repaired program
Y. : set of states, and T, E (X xX)isa nondeterministic transition relation

For a state s € X, s(C) denotes the basic command associated with the
state

Traces are sequences of states
B.: the set of bad runs of P

G,: the set of good runs of P

@

Verified Repair

Assertion abstraction o, removes all states but those referring to

assertions
O, p- denotes a repair that transforms program P to program P’

If o A(Gp) & aSP,P, ° o, (Gp) and o A(BP) D OLSP’P, °a,(B), then we say that

S, - is a verified repair for P and that P’ is an improvement of P

Denies P as an improvement, since the number of bad traces should
strictly decrease

For B, and G, we use the bad and good runs of P inferred by cccheck

Program Repairs in Practice

® C(Cccheck has four main phases:
o Assertion Gathering
o Fact Inference
o Proving Assertions
o Report Warnings and Suggest Repairs

Assertion Fact : Report

Proving Assertions

e There are four possible outcomes:

O O O O

True: Assertion holds for all executions reaching it

False: Assertion fails for all executions reaching it

Bottom: No execution will ever reach the assertion

Top: We do not know; assertion was violated sometimes or the

T L

analysis was too imprecise

Generating Repairs

e On average, a method is analyzed in 156 ms
® Cccheck attempts to generate repairs for false and top outcomes
e Program repairs can be inferred in two ways:

o Backwards must analysis

o Forwards may analysis

Backwards Analysis

// Original code
if (¢ == null) {

var r = new Rectangle(®, 0, c.Width);
}

// A Suggested Repair
1f (c != null) {

var r = new Rectangle(®, 0, c.Width);
}

e Starts with a failing assertion e and analyzes backwards until it finds a
point where the preconditions of e might not hold

e Able to infer repairs for contracts, initializations and guards

Forwards Analysis

e Infers repairs from the abstract domains

e Works for off-by-one errors, floating point comparisons, and
arithmetic overflows

So How Well Does It Work?

Results Breakdown

Overall Asserts

Methods Time | Asserts Validated Warnings | Repairs with Repairs
system.Windows.forms 23,338 154,863 137,513 17,350 |0
mscorlib 22,304 113,982 103,596 10,386 | 16.291
system 15,187 99,907 90.824 9,083 ||ElESRsREH

system.data.entity 13,884 95,092 81,223 13,869 | 28,648

system. core 5,953 34,156 30,456 3,700 9,591

custommarshaler 215 474 433 41 &l
498,474 444,045

e Standard libraries with validated asserts (true, bottom) and warning

(false, top)

e Repairs (many to many) and asserts with at least one repair (success)

Results of IDE Integration

Cccheck was integrated into Visual Studio

With no caching, cccheck:
o Analyzes 6+ methods per second
o Infers 7.5 repairs per second

With caching:
o Performance was increased tenfold

Conclusion: the approach is efficient enough to be used in an IDE

What Makes This Research Different?

Does not rely on known failing test

The program does not need to be run
Property-specific repairs

Handles loops and infinite state spaces
More general fixes than symbolic execution

Precise yet universal definition of code repair

Related Work

Automated program repair field, which is very active
Eclipse Fix-it can repair syntactically wrong programs
GenProg, PAR, ARMOR, Staged Program Repair

Speculative analysis tools like Quick Fix Scout which finds
previous fixes from other code

Summary

e Using warnings generated from modular static analysis, it is
possible to automatically generate repair suggestions at
design time

e This process is fast, consistent, and precise enough to catch
bugs in shipped code

e Verified repair: removes bad runs while possibly increasing
good runs

Discussion Questions

What types of bugs can verified automatic program repair fix well?
What types of bugs might it not fix well?
Would this type of repair suggestion be useful at design time?

Could simple errors eventually be corrected without the input of the
programmer (like AutoCorrect in MS Word)?

More Discussion Questions

e How could this system be extended in the future to find more
complex and abstract errors, or to help with other common
programming tasks?

e If a test suite is available, how should it be incorporated into the static

analysis of cccheck?

e C(Can it actually make you, the developer, actually understand your
program better (more deeply)?

Sources

http://research.microsoft.com/pubs/170385/res0099-logozzo.pdf
http://research.microsoft.com/en-US/projects/contracts/cccheck pdf
http://research.microsoft.com/pubs/138696/Main.pdf

https:/[people.cs.umass.edu/~brun/class/2015Fall/CS521.
621/lectures/20151021SpeculativeAnalysis.pdf

