11/15/15

Midterm Review
and
Automated Repair Evaluation

Course updates

* Homework 5 in posted
* Midterm this Wednesday, Nov 18, in class
* Final report assignment will be posted soon

Feedback: 2 opportunities

* http://800.8l/rdRRIN s si/eo1 teeduack fom (ran201%)

Feedback: 2 opportunities

DTA feedback last 15-minutes today

thanks!

Today’s plan

* Midterm review
— What kinds of questions to expect
— Examples of questions
— How to attack the hard questions
— Topics to be covered
— Your questions
* new topic: Evaluating automated repair

* DTA feedback

What’s the midterm like?

* Some true/false questions
* Some multiple choice questions

* Some reasoning questions




11/15/15

True / False Example

Automatically predicting collaboration conflicts,

if applied properly, would eliminate the need for
resolving conflicts, which would greatly improve
software development productivity.

Multiple Choice Example

Rational Purify can find the following types of bugs
(check all that apply):

A. Writing past the end of an array

B. Reading past the end of an array

C. Writing past the end of the first object in an
array of objects

D. Null pointer exceptions

E. Using a different method than the developer
intended

Reasoning

* Reasoning are the harder questions that
require abstraction and application of what
you learnt.

* Reasoning questions will largely cover the
papers presented in class, and the homework
assignments

Reasoning Example

Consider this simple concurrent program.
Does it have any races?

Why does CheckSync, from homework 4,
report the following race?

When Solving Reasoning Problems

* Important to pause for a moment to think
about how to proceed.

* Plan your attack and evidence you will use to
support your answer.

* You will have scratch paper to use to organize
your thoughts (scratch will not be graded).

Come up with an answer, and its support, and

write it clearly, concisely in the provided space.

Topics to be covered

* Dynamic analysis
— Daikon and Purify
» Software development lifecycle

—ad hoc, code and fix, waterfall, spiral, staged,
scrum

* Test generation

— Korat, Chronicler and BugRedux (field failures),
mobile testing and recovery, mutation testing




Topics to be covered

* Automated Bug Fixing

— redundant methods, Par, staged repair,

web app method substitutions, program boosting
(crowd),

* Speculative Analysis

— Quick fix scout, Crystal, CodeHint
* Software security

—sTile and smart redundancy

11/15/15

Now your chance

...to ask me questions about these topics

* dynamic analysis * automated bug fixing
* development lifecycle * speculative analysis

* test generation * software security

Automated Repair Evaluation

What do cobras have to do with
automated program repair?

repairing python programs?

Cobra effect

Automated Program Repair

basic idea:

buggy program\ APR tool
mutate

passing tests = o\ 1uate mutants [ Patched program

repeat

failing tests




the many repair tools

ClearView [Perkins et al. 2009] GenProg [Weimer et al. 2009]
TDS [Perelman et al. 2014]
AE [Weimer et al. 2013] PAR [Kim et al. 2013]

AutoFix-E [Wei et al. 2010] SemFix [Nguyen et al. 2013]

[Carzaniga et al. 2010]

[Forrest et al. 2009]
[Coker and Hafiz 2013]

[Carzaniga et al. 2013]

[Jin et al. 2011]
[Debroy and Wong 2010]

[Novark et al. 2007])  [Demsky et al. 2006]  [Lin and Ernst 2004]

11/15/15

Potential problem

buggy program\ APR tool
. mutate
passing tests = o 1uate mutants [ Patched program

repeat

failing tests

the patched program may pass all given tests,
but break other functionality

COMPUTE THE
MEDIAN OF THREE
NUMBERS

int median(int a, int b, int c) {
int result;
if ((b<=a && a<=c) ||
(c<=a && a<=b))
result = a;
if ((a<b && b <= c¢) ||
(c<=b && b<a))
result = b;
if ((a<c && c<b) ||
(b<c && c<a))
result = c;
return result;

result = a;

result = b;




result = c;

11/15/15

result = a;

(b<=a && a<=c)

result = a;

(c<=a && a<=b)
result = a;

((b<=a && a<=c) ||
(c<=a && a<=b))
result = a;
((a<b && b <= c) ||
(c<=b && b<a))
result = b;
((a<c && c<b) ||
(b<c && c<a))
result = c;

int med_broken(int a, int b, int c) {
int result;
if ((a==b) || (a==c) ||
(b<a && a<c) ||
(c<a && a<b))
result = a;
else if ((b==c) || (a<b && b<c) |
(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;

return result;




(b<a && a<c) ||
(c<a && a<b))

(a<b && b<c) ||
(c<b && b<a))

(a<c && c<b)

11/15/15

(b<a && a<c) ||
(c<a && a<b))

(a<b && b<c) ||

(c<b && b<a))

(a<c && c<b)

int med broken(int a, int b, int c) {
[ input | Expected

int result;
if ((a==b) || (a==c) ||

000 O v

(b<a && a<c) || TR X

(c<a && a<b)) 001 0 v
result = a; 010 0 v
else if ((b==c) || (a<b && b<c) g, 1 v
(c<b && b<a)) 023 2 v

result = b;

else if (a<c && c<b)
result = c;

return result;

}

[input | Expected | Pass? |

(b<a &8 000 0 v

2,01 1 X

001 0 v

010 0 v

if (b < a) 021 1 v

result = c; 023 2 v

int med broken(int a, int b, int c) {
e e [input_| Expected_ pase? |
if ((a==b) || (a==c) ||
0,00 0 4
—h<a—&sa<er 201 1 X
(c<a && a<b)) 001 0 v
result = a; 010 0 v
if (b < a) 021 1 7
result = c; 023 2 Vs
else if (b<a) (b==c) || (a<b && b<c) ||
(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;
}
int med broken(int a, int b, int c) {
e e [input_| Expected_ pase? |
if ((a==b) || (a==c) ||
0,00 0 4
~(b<a && a<c) || 200 11 7
(c<a && a<b)) 001 0 v
result = a; 010 0 v
if (b < a) 021 1 7
result = c; 023 2 Vs
else if (b<a) (b==c) || (a<b && b<c) ||

(c<b && b<a))
result = b;
else if (a<c && c<b)
result = c;
return result;




11/15/15

int med_broken(int a, int b, int c) { int med_broken(int a, int b, int c) {
int result; int result;
. . Expected | Pass?
if ((a==b) || (a==c) || if ((a==b) || (a==c) || IOHEI/-
(b<a && a<c) || ~(b<a && a<c) || —
20,1 1 4
(c<a && a<b)) (c<a && a<b)) 001 © v
result = a; result = a; 0’110 0 v
if ((b==c) || (a<b && b<c) || if (b < a) 021 1 v
(c<b && b<a)) result = c; 023 2 v
result = b; else if (b<a) (b==c) || (a<b && b<c) ||
if (a<c && c<b)  input | Expected | Pass? | (c<b && b<a))  Input | Expected | Pass? |
result = c; 268 6 7 result = b; 268 6 7
return result; 286 6 v else if (a<c && c<b) 286 6 v
} 6,28 6 v result = c; 628 6 X
682 6 4 return result; 682 6 4
826 6 X } 826 6 4
86,2 6 Vi 862 6 X
999 9 7 999 9 7
Potential solution Focus of prior evaluations
* Most evaluations are interested in whether tools
work
— produce patches
bl rogram . .
188y Prog N APR tool * Some interest in other factors
mutate h
; - tance of patches
passing tests ——>| —> patched program uman accep )
e"a'“i‘e mutants [Durieux et al. 2015] [Fry et al. 2012] [Kim et al. 2013]
repea T o
failing tests P — plausibility [Qi et al. 2015]

— ...but these don't fully assess functional correctness

* No evaluations test functional correctness of

Use an independent test suite to measure repair outputs independently of repair inputs

quality of the patch

What do we need? Make your own!
* We need bugs with 2 test suites http://repairbenchmarks.cs.umass.edu
— and the test suites need to be good 998 student-written buggy C programs
Why? — simple (very small)

— have 2 test suites
* white-box (generated by KLEE)

* it’s hard enough to find one good test suite, A :
* black-box (written by instructor)

good luck finding programs with two

Some programs fail some wb tests, others bb
tests, others, some of both




RQ1:
What is the base incidence of overfitting?

Give a repair tool the buggy program and the
black-box test suite, try to repair it, see what
fraction of the white-box tests the patches pass.

11/15/15

RQ1:
What is the base incidence of overfitting?

but first, how often can we actually generate
patches?

patch production %

GenProg 466/778 = 59.9%

TrpAutoRepair 444/778 =57.1%

RQ1:
What is the base incidence of overfitting?

§100%
gsoo/o . | s |
2 40%
4 : -
£ 20% :
B
2 0% :

Ge“?‘ \o“eoa\‘

RQ2: What effect do pre-repair test
failures have on overfitting?
GenProg ~ TpAutRepas

e

S100%- § % 2 %
Ml BEERY
§75~- | . S ‘_g
§ $ !

- Lt t $ l :

z E ! 3"

g 25%- >4

5

£ 0% o

b 28%, % 7% 100%

belore-repair training passing rate

Programs that fail more tests before repair still fail more tests after repair

RQ2: What effect do pre-repair test
failures have on overfitting?
GenProg -+ TrpAutRepar

% F
A B “
g"m_ = ; = =

before-repair t;mning passing rate

Repair is at best unlikely to improve correctness, at worst likely to worsen it

RQ3: What effect does test suite
coverage have on overfitting?

* Randomly sample 25%, 50%, and 75% of
passing and failing tests for each buggy
program

* Attempt to repair programs
— with each level of test coverage

* If a repair is found, measure correctness of
repair




11/15/15

RQ3: What effect does test suite RQ4: What effect does test suite
coverage have on overfitting? provenance have on overfitting?

o . Bhchepe * So far, all experiments have used human-written
2 black-box tests to build repairs
£ - * Switch to using KLEE-generated white-box tests
i A .
® sox- * Attempt to repair programs
3 & e - .
< * If a repair is found, measure correctness of repair
'é o . . — this time with black-box tests

.
%~ - - -
2% 5% TEw%  100%  25% S0%  T5%  100%

available training suite coverage

Lower test suite coverage leads to more overfitting

RQ4: What effect does test suite .
e RQ4: Do tools do better than novices?
provenance have on overfitting?
8100%
GenProg TrpAutoRepair a

§wo% : g100% ‘ § 80%- o . 2
g 80% : g oox — 8 6o%
£ so% 2 60% 3 o
- . - ] Cl

2 Frov) I - g 40% i %’ $
20%

% 20% : % 20% -Z

2 o | # o ] 2 0%

o3 * \} A\l

66\-}’&‘ ‘ﬂ‘@\e’bo* .d'&*/bo “N\e,w Ge“?‘og ‘“)“\3 F“.\o@eo'»

A%
Automatically generated tests produced significantly buggier repairs
compared to human-written tests
Summary So is there no hope?
* Overfitting is a real concern * SearchRepair, a brand new technique, reduces
— median patch for either tool passed only 75% of overfitting to 97.2%.

evaluation suite
* Overfitting is hard to avoid
— minimization doesn't help on this dataset
— N-version voting only works in extreme cases
* Program repair is harder for buggier programs,
but likely to break more correct programs Read more about SearchRepair:
* Novice developers don't significantly beat repair
tools

* Most SearchRepair repairs pass 100% of the
held-out test suite.
(Select few poor repairs drop the overall rate.)

http://people.cs.umass.edu/~brun/pubs/pubs/Kel5ase.pdf




