
9/14/15	

1	

CS	
 521/621	
 	

Course	
 Overview:	

Sta7c	
 and	
 Dynamic	
 Analyses	

Last	
 7me	

What	
 did	
 we	
 talk	
 about?	

Why	
 is	
 it	
 important	
 to	
 study	

soGware	
 engineering?	

Just	
 like	
 cars	

•  US	
 automobile	
 industry	
 used	
 to	
 be	
 very	
 complacent	
 about	
 quality	

–  lost	
 a	
 significant	
 amount	
 of	
 market	
 share	

–  complacency	
 about	
 soGware	
 quality	
 could	
 lead	
 to	
 the	
 same	
 result	

•  There	
 are	
 many	
 recalls	
 for	
 automobiles	

–  some	
 fixed	
 for	
 free	

	

•  There	
 are	
 many	
 defects	
 in	
 soGware	
 	

–  some	
 fixed	
 for	
 free	

–  some	
 fixed	
 in	
 the	
 the	
 next	
 release	
 	

•  customer	
 paying	
 for	
 the	
 upgrade	

	

Why	
 is	
 analysis	
 important?	

9/14/15	

2	

Trends in Software Expansion (Bernstein, 1997)

Expansion
Factor

The ratio
of machine

lines of
code to a
source line
of code

1

10

100

1000

1960 1965 1970 1975 1980 1985 1990 20001995

Order of Magnitude Increase Every Twenty Years

Machine
Instructions

Macro
Assembler

High Level
Language

Database
Manager

On-line

Regression
Testing

Prototyping

4GL

Subsecond
Time

Sharing
Small
Scale
Reuse

Object
 Oriented

Programming

Large Scale
Reuse

142113
8175

4737.530

15

3

475
638

Projection

Significant	
 increase	
 in	
 soGware	
 control	

• 1960
− 8% of F-4 Fighter capability was
provided by software

• 2000
− 85% of F-22 Fighter capability is
provided by software

GAO, Report to the Committee on Armed Services, U.S. Senate, March 2004, pg. 4

Accidents	

•  USS	
 Yorktown	

	
 hQp://www.slothmud.org/~hayward/mic_humor/nt_navy.html	
 	

–  Suffered	
 a	
 systems	
 failure	
 when	
 bad	
 data	
 was	
 fed	
 into	
 its	
 computers	

during	
 maneuvers	
 off	
 the	
 coast	
 of	
 Cape	
 Charles,VA	

–  Ship	
 towed	
 into	
 the	
 Naval	
 base	
 at	
 Norfolk,VA,	
 because	
 a	
 database	

overflow	
 caused	
 its	
 propulsion	
 system	
 to	
 fail	

–  Took	
 two	
 days	
 of	
 pier-­‐side	
 maintenance	
 to	
 fix	
 the	
 problem	

•  Ariane	
 Five	

	
 	
 	
 hQp://www.ima.umn.edu/~arnold/disasters/ariane5rep.html	
 	

–  Reused	
 a	
 module	
 developed	
 for	
 Ariane	
 4,	
 which	
 assumed	
 that	
 the	

horizontal	
 velocity	
 component	
 would	
 not	
 overflow	
 a	
 16-­‐bit	
 variable	

–  Not	
 true	
 for	
 Ariane	
 5,	
 leading	
 to	
 self-­‐destruc7on	
 roughly	
 40	
 seconds	

aGer	
 launch	

Any	
 ques7ons?	

Some	
 logis7cs	

•  521	
 vs.	
 621	

– 621	
 is	
 graduate	
 students	
 only	

– 521	
 is	
 undergraduate	
 or	
 graduate	

–  the	
 material	
 is	
 the	
 same,	
 the	
 midterm	
 is	
 the	
 same,	

the	
 assignments	
 are	
 the	
 same	

– only	
 three	
 differences:	

•  621	
 students	
 must	
 do	
 a	
 project	
 +	
 1	
 paper	
 presenta7on	

•  521	
 students	
 must	
 do	
 2	
 paper	
 presenta7ons	

•  Grading	
 (scaling)	
 is	
 separate	

Any	
 ques7ons?	

9/14/15	

3	

Today’s	
 (and	
 not	
 only	
 today’s)	
 plan	

•  Sta7c	
 analysis	

•  Dynamic	
 analysis	

•  Model	
 checking	

•  Muta7on	
 tes7ng	

•  Bug	
 localiza7on	

•  Symbolic	
 execu7on	

Areas	
 we	
 will	
 cover	
 in	
 this	
 course	

•  Sta7c	
 analysis	

•  Dynamic	
 analysis	

•  Model	
 checking	

•  Muta7on	
 tes7ng	

•  Bug	
 localiza7on	

•  Symbolic	
 execu7on	

areas	
 for	
 your	
 projects	

As	
 we	
 go	
 over	
 each	
 topic…	

•  Think	
 whether	
 this	
 sounds	
 interes7ng	

•  Think	
 about	
 what	
 kind	
 of	
 a	
 tool	
 you	
 could	

make	
 that	
 uses	
 this	

•  You	
 are	
 all	
 programmers:	
 	

think	
 about	
 things	
 you’ve	
 done	
 while	

programming	
 that	
 were	
 hard,	
 and	
 how	
 these	

kinds	
 of	
 analysis	
 might	
 make	
 it	
 easier	

Sta7c	
 Analysis	

•  Two	
 kinds	
 we’ll	
 consider:	

– Manual	

– Automa7c	

Manual	
 Reviews	

– Manual	
 sta7c	
 analysis	
 methods	

•  Reviews,	
 walkthroughs,	
 inspec7ons	

– Most	
 can	
 be	
 applied	
 at	
 any	
 step	
 in	
 the	
 lifecycle	

– Have	
 been	
 shown	
 to	
 improve	
 reliability,	
 but	

•  oGen	
 the	
 first	
 thing	
 dropped	
 when	
 7me	
 is	
 7ght	

•  labor	
 intensive	

•  oGen	
 done	
 informally,	
 no	
 data/history,	
 not	
 repeatable	

Reviews	
 and	
 walkthroughs	

•  Reviews	

– author	
 or	
 one	
 reviewer	
 leads	
 a	
 presenta7on	
 of	

the	
 ar7fact	

–  review	
 is	
 driven	
 by	
 presenta7on,	
 issues	
 raised	

	

•  Walkthroughs	

– usually	
 informal	
 reviews	
 of	
 source	
 code	

– step-­‐by-­‐step,	
 line-­‐by-­‐line	
 review	

9/14/15	

4	

Inspec7ons	

•  SoGware	
 inspec7ons	

–  formal,	
 mul7-­‐stage	
 process	

– significant	
 background	
 &	
 prepara7on	

–  led	
 by	
 moderator	

– many	
 varia7ons	
 of	
 this	
 approach	

Experimental	
 results	

•  soGware	
 inspec7ons	
 have	
 repeatedly	
 been	

shown	
 to	
 be	
 cost	
 effec7ve	

•  increases	
 front-­‐end	
 costs	

	
 ~15%	
 increase	
 to	
 pre-­‐code	
 cost	

•  decreases	
 overall	
 cost	

IBM	
 study	

•  Doubled	
 number	
 of	
 lines	
 of	
 code	
 produced	

per	
 person	
 	

– some	
 of	
 this	
 due	
 to	
 inspec7on	
 process	

•  Reduced	
 faults	
 by	
 2/3	

•  Found	
 60-­‐90%	
 of	
 the	
 faults	

•  Found	
 faults	
 close	
 to	
 when	
 they	
 were	

introduced	

The	
 sooner	
 a	
 fault	
 is	
 found	
 the	
 less	
 costly	
 it	
 is	
 to	
 fix	

Why	
 are	
 inspec7ons	
 effec7ve?	

•  Knowing	
 the	
 product	
 will	
 be	
 scru7nized	

causes	
 developers	
 to	
 produce	
 a	
 beQer	

product	
 	
 	
 (Hawthorne	
 effect)	

•  Having	
 others	
 scru7nize	
 a	
 product	
 increases	

the	
 probability	
 that	
 faults	
 will	
 be	
 found	

•  Walkthroughs	
 and	
 reviews	
 are	
 not	
 as	
 formal	

as	
 inspec7ons,	
 but	
 appear	
 to	
 also	
 be	
 effec7ve	

– hard	
 to	
 get	
 empirical	
 results	

What	
 are	
 the	
 deficiencies?	

•  Tend	
 to	
 focus	
 on	
 error	
 detec7on	

–  what	
 about	
 other	
 "ili7es”	
 -­‐-­‐	
 maintainability,	
 portability,	
 etc?	

•  Not	
 applied	
 consistently/rigorously	

–  inspec7on	
 shows	
 sta7s7cal	
 improvement	

•  Human-­‐intensive	
 and	
 oGen	
 makes	
 ineffec7ve	
 use	
 of	

human	
 resources	

–  skilled	
 soGware	
 engineer	
 reviewing	
 coding	
 standards,	

spelling,	
 etc.	

–  Lucent	
 study:	
 ½M	
 LoCS	
 added	
 to	
 5M	
 LoCS	
 required	
 ~1500	

inspec7ons,	
 ~5	
 people/inspec7on	

–  no	
 automated	
 support	

	

Automa7c	
 sta7c	
 analysis	

What	
 can	
 you	
 tell	
 me	
 about	
 this	
 code:	

public int square(int x) {

 return x * x;
}

9/14/15	

5	

Automa7c	
 sta7c	
 analysis	

What	
 about	
 this	
 code:	

public double weird_sqrt(int x) {

 if (x > 0)
 return sqrt(x);

 else
 return 0;

}

Compu7ng	
 Control	
 Flow	
 Graphs	
 (CFGs)	

Procedure AVG
	

S1	
 	
 	
 count	
 =	
 0	

S2	
 	
 	
 fread(fptr,	
 n)	

S3	
 	
 	
 while	
 (not	
 EOF)	
 do	

S4	
 	
 	
 	
 	
 	
 if	
 (n	
 <	
 0)	

S5	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 (error)	

	
 	
 	
 	
 	
 	
 	
 	
 else	

S6	
 	
 	
 	
 	
 	
 	
 	
 	
 nums[count]	
 =	
 n	

S7	
 	
 	
 	
 	
 	
 	
 	
 	
 count	
 ++	

	
 	
 	
 	
 	
 	
 	
 	
 endif	

S8	
 	
 	
 	
 	
 	
 	
 	
 	
 fread(fptr,	
 n)	

	
 	
 	
 	
 	
 	
 endwhile	

S9	
 	
 	
 avg	
 =	
 mean(nums,count)	

S10	
 	
 return(avg)	

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 if EOF goto S11
S4 if (n >= 0) goto S7
S5 return (error)
S6 goto S9
S7 nums[count] = n
S8 count ++
S9 fread(fptr, n)
S10 goto S3
S11 avg = mean(nums,count)
S12 return(avg)

CFG	
 with	
 Maximal	
 Basic	
 Blocks	

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)
 else
S6 nums[count] = n
S7 count ++
 endif
S8 fread(fptr, n)
 endwhile
S9 avg = mean(nums,count)
S10 return(avg)

Wrong!

CFG	
 with	
 Maximal	
 Basic	
 Blocks	

S1,2

S3

S4

S5
S6,7,8

S9,10

entry

exit

F

T

F

T

Procedure AVG

S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)
 else
S6 nums[count] = n
S7 count ++
 endif
S8 fread(fptr, n)
 endwhile
S9 avg = mean(nums,count)
S10 return(avg)

What	
 about	
 data	
 flow?	

We	
 can	
 do	
 the	
 same	
 thing	
 as	
 with	
 control	
 flow	

Uses	
 of	
 Data-­‐Flow	
 Analyses	

•  Compiler	
 Op+miza+on	

•  	
 E.g.,	
 Constant	
 propaga+on	

	
 	

	

	

	
 suppose	
 every	
 assignment	
 to	
 c	
 that	
 reaches	
 this	
 statement	
 assigns	
 5	

	

	
 then	
 a	
 can	
 be	
 replaced	
 by	
 15	

	
 	

	
 	

a=c+10

➡ need to know reaching definitions: which definitions of
variable c reach a statement

9/14/15	

6	

Uses	
 of	
 Data-­‐Flow	
 Analyses	

•  So1ware	
 Engineering	
 Tasks	

•  	
 E.g.,	
 Debugging	

	
 suppose	
 that	
 a	
 has	
 the	
 incorrect	
 value	
 in	
 the	
 statement	

	

	
 	

	
 	

a=c+y

➡ need data dependence information: statements that can
affect the incorrect value at a given program point

Sta7c	
 analysis	
 summary	

•  Manual	
 or	
 automa7c	

– very	
 different	

– manual	
 removes	
 bugs	

•  Analyze	
 the	
 source	
 code	
 to	
 determine	

– control	
 flow	

– data	
 flow	

•  Build	
 reachability	
 graphs,	
 data	
 dependence	

graphs,	
 etc.	
 	
 	

Dynamic	
 analysis	

•  Asser7ons	

•  Detec7ng	
 invariants	

Asser7ons	

public double area(int length, int width) {
assert(length >=0);

assert(width >=0);
 return length * width;

}

Detec7ng	
 invariants	

public int square(int x) {
 return x * x;

}

Let’s	
 run	
 the	
 code	
 and	
 watch	
 it.	
 	
 What	
 can	
 we	
 tell	
 about	
 it?	

Why	
 dynamic	
 detec7on?	

•  Is	
 it	
 sound?	

–  If	
 you	
 learn	
 a	
 property	
 about	
 a	
 program,	
 must	
 it	

be	
 true?	

•  Is	
 it	
 complete?	

– Do	
 you	
 learn	
 all	
 proper7es	
 that	
 are	
 true	
 about	
 a	

program?	

9/14/15	

7	

So	
 why	
 dynamic	
 detec7on?	

•  Code	
 can	
 be	
 complex	

– Sta7c	
 analysis	
 may	
 not	
 scale	
 to	
 large	
 programs.	

•  Some7mes,	
 logs	
 is	
 all	
 you	
 have	
 access	
 to	

– Not	
 all	
 code	
 is	
 open	
 source.	
 	
 If	
 you	
 use	
 libraries,	

others’	
 code,	
 you	
 may	
 only	
 be	
 able	
 to	
 observe	

execu7ons.	

•  Fast	

•  Detects	
 proper7es	
 of	
 actual	
 usage,	
 rather	

than	
 all	
 possible	
 usage	

What	
 can	
 we	
 do	
 with	
 sta7c	
 and	

dynamic	
 analyses?	

•  You	
 have:	

– a	
 program	

– some	
 tests	
 that	
 pass	

– some	
 tests	
 that	
 fail	

What	
 can	
 we	
 do	
 with	
 sta7c	
 and	

dynamic	
 analyses?	

•  You	
 have:	

– a	
 program	

– some	
 tests	
 that	
 pass	

– some	
 tests	
 that	
 fail	

What	
 can	
 we	
 do	
 sta7cally?	

Sta7cally,	
 we	
 can…	

•  Think	
 about	
 the	
 code	
 long	
 and	
 hard,	
 and	
 fix	
 it.	

•  Can	
 we	
 step	
 through	
 a	
 failing	
 test	
 case?	
 	
 	

See	
 where	
 the	
 code	
 goes	
 wrong?	

– but	
 to	
 automate	
 this,	
 we	
 have	
 to	
 know	
 where	
 the	

code	
 is	
 “supposed”	
 to	
 go	

•  Can	
 we	
 reverse-­‐engineer	
 the	
 condi7ons	

necessary	
 to	
 get	
 to	
 the	
 desired	
 result?	

What	
 can	
 we	
 do	
 with	
 sta7c	
 and	

dynamic	
 analyses?	

•  You	
 have:	

– a	
 program	

– some	
 tests	
 that	
 pass	

– some	
 tests	
 that	
 fail	

What	
 can	
 we	
 do	
 dynamically?	

Dynamically,	
 we	
 can…	

•  Run	
 the	
 code	
 and	
 observe	
 	

which	
 lines	
 execute	
 when	

–  lines	
 that	
 execute	
 on	
 failings	
 tests	
 only	
 are	
 more	

likely	
 buggy	

•  We	
 can	
 detect	
 code	
 invariants	
 and	
 reason	

about	
 the	
 code	

•  We	
 can	
 muck	
 with	
 the	
 code	
 and	
 see	
 if	
 it	
 does	

any	
 beQer	
 on	
 the	
 tests	

