9/14/15

CS521/621
Course Overview:
Static and Dynamic Analyses

Last time

What did we talk about?

S

Afghanistan Stability / COIN Dynamics

OQUTSIDE SUPPORT
70 INSURGENT
FACTIONS

POPULATION ™.
CONDITIONS
& BELIEFS

PG

Why is it important to study
software engineering?

Just like cars

US automobile industry used to be very complacent about quality
— lost a significant amount of market share
— complacency about software quality could lead to the same result

There are many recalls for automobiles
— some fixed for free

There are many defects in software
— some fixed for free
— some fixed in the the next release
* customer paying for the upgrade

Why is analysis important?

Trends in Software Expansion (Bemstein, 1997)

Projectio
1000 L.
g——10
13 14 =
Expansion ;g _
Factor | — 75 8
7
The ratio L=
of machine 1
lines of S
codetoa 1o
source line
of code i
Order of Magnitude Increase Every Twenty Years E
T T T T T T
. \ \ \ I \ \ \
1960 1965 1970 1975 1980 1985 1990 1995 2000
Machine Macro High Level Database On-line Prototyping | Subsecond Object Large Scale
Instructions Assembler Language Manager Time Reuse
Sharing | Programming
Regression 6L Small

Testing Seale.

Reuse

9/14/15

Accidents

* USS Yorktown

http://www.slothmud.org/~hayward/mic_humor/nt_navy.html

— Suffered a systems failure when bad data was fed into its computers
during maneuvers off the coast of Cape Charles,VA

— Ship towed into the Naval base at Norfolk,VA, because a database
overflow caused its propulsion system to fail

— Took two days of pier-side maintenance to fix the problem
* Ariane Five

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
— Reused a module developed for Ariane 4, which assumed that the
horizontal velocity component would not overflow a 16-bit variable

— Not true for Ariane 5, leading to self-destruction roughly 40 seconds
after launch

Significant increase in software control
B

1960
- 8% of F-4 Fighter capability was
provided by software

2000
- 85% of F-22 Fighter capability is
provided by software

GAO. Report to the Committee on Armed Services. U.S. Senate, March 2004, pg. 4

Some logistics

e 521 vs.621
— 621 is graduate students only
— 521 is undergraduate or graduate

— the material is the same, the midterm is the same,
the assignments are the same
— only three differences:
* 621 students must do a project + 1 paper presentation
* 521 students must do 2 paper presentations
 Grading (scaling) is separate

Today’s (and not only today’s) plan

Static analysis

Dynamic analysis

Model checking

Mutation testing

Bug localization

Symbolic execution

9/14/15

Areas we will cover in this course

* Static analysis

* Dynamic analysis
* Model checking

* Mutation testing

* Bug localization

* Symbolic execution

areas for your projects |

As we go over each topic...

* Think whether this sounds interesting

* Think about what kind of a tool you could
make that uses this

* You are all programmers:
think about things you’ve done while
programming that were hard, and how these
kinds of analysis might make it easier

Static Analysis

* Two kinds we’ll consider:
— Manual
— Automatic

Manual Reviews

— Manual static analysis methods
* Reviews, walkthroughs, inspections
— Most can be applied at any step in the lifecycle
— Have been shown to improve reliability, but
« often the first thing dropped when time is tight
* labor intensive
« often done informally, no data/history, not repeatable

Reviews and walkthroughs

* Reviews

— author or one reviewer leads a presentation of
the artifact

— review is driven by presentation, issues raised

* Walkthroughs
— usually informal reviews of source code
— step-by-step, line-by-line review

Inspections

* Software inspections
— formal, multi-stage process
— significant background & preparation
— led by moderator
— many variations of this approach

9/14/15

Experimental results

* software inspections have repeatedly been
shown to be cost effective

increases front-end costs
~15% increase to pre-code cost

decreases overall cost

IBM study

Doubled number of lines of code produced
per person

— some of this due to inspection process
Reduced faults by 2/3

Found 60-90% of the faults

Found faults close to when they were
introduced

The sooner a fault is found the less costly it is to fix

Why are inspections effective?

Knowing the product will be scrutinized
causes developers to produce a better
product (Hawthorne effect)

* Having others scrutinize a product increases
the probability that faults will be found

* Walkthroughs and reviews are not as formal
as inspections, but appear to also be effective
— hard to get empirical results

What are the deficiencies?

* Tend to focus on error detection
— what about other "ilities” -- maintainability, portability, etc?
* Not applied consistently/rigorously
— inspection shows statistical improvement
* Human-intensive and often makes ineffective use of
human resources

— skilled software engineer reviewing coding standards,
spelling, etc.

— Lucent study: %M LoCS added to 5M LoCS required ~1500
inspections, ~5 people/inspection

— no automated support

Automatic static analysis

What can you tell me about this code:

public int square(int x) {

return x * x;

9/14/15

Automatic static analysis
What about this code:

public double weird sqgrt(int x) {
if (x > 0)
return sqgrt(x);
else

return 0;

Computing Control Flow Graphs (CFGs)

Procedure AVG

S| count=0

S2 fread(fptr, n)

S3 if EOF goto SI |

S4 if (n >= 0) goto S7
S5 return (error)

S6 goto S9

S7 nums[count] = n
S8 count ++

S9 fread(fptr, n)

SI0 goto S3

SI1 avg = mean(nums,count)
S12 return(avg)

CFG with Maximal Basic Blocks
W,

Procedure AVG

Sl count=0

S2 fread(fptr, n)
S3 while (not EOF) do
S4 if(n<0)
S5 return (error)
else
Sé nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
SI0 return(avg)

CFG with Maximal Basic Blocks

Procedure AVG

S| count=0
S2 fread(fptr, n)
S3 while (not EOF) do

S4 if(n<0)
S5 return (error)
else
Sé6 nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
S10 return(avg)

What about data flow?

We can do the same thing as with control flow

Uses of Data-Flow Analyses

* Compiler Optimization
* E.g., Constant propagation

a
suppose every assignment to ¢ that reaches this statement assigns 5

then a can be replaced by 15

= need to know reaching definitions: which definitions of
variable c reach a statement

Uses of Data-Flow Analyses

* Software Engineering Tasks
e E.g., Debugging
suppose that a has the incorrect value in the statement

a=cty

= need data dependence information: statements that can
affect the incorrect value at a given program point

9/14/15

Static analysis summary

* Manual or automatic
— very different
— manual removes bugs
* Analyze the source code to determine
— control flow
— data flow

* Build reachability graphs, data dependence
graphs, etc.

Dynamic analysis

* Assertions

* Detecting invariants

Assertions

public double area(int length, int width)
assert (length >=0);
assert (width >=0);

return length * width;

{

Detecting invariants

public int square(int x) {

return x * x;

Let’s run the code and watch it. What can we tell about it?

Why dynamic detection?

* Isit sound?

— If you learn a property about a program, must it
be true?

* s it complete?

— Do you learn all properties that are true about a
program?

9/14/15

So why dynamic detection?

* Code can be complex
— Static analysis may not scale to large programs.
* Sometimes, logs is all you have access to

— Not all code is open source. If you use libraries,
others’ code, you may only be able to observe
executions.

* Fast

« Detects properties of actual usage, rather
than all possible usage

What can we do with static and
dynamic analyses?

* You have:
— a program
— some tests that pass
— some tests that fail

What can we do with static and
dynamic analyses?
* You have:
— a program
— some tests that pass
— some tests that fail

- What can we do statically?

Statically, we can...

* Think about the code long and hard, and fix it.
* Can we step through a failing test case?
See where the code goes wrong?
— but to automate this, we have to know where the
code is “supposed” to go
* Can we reverse-engineer the conditions
necessary to get to the desired result?

What can we do with static and
dynamic analyses?
* You have:
— a program
— some tests that pass
— some tests that fail

‘What can we do dynamically?

Dynamically, we can...

* Run the code and observe
which lines execute when
— lines that execute on failings tests only are more

likely buggy

* We can detect code invariants and reason
about the code

* We can muck with the code and see if it does
any better on the tests

