Automatic Test Generation

9/24/14

Last time

Daikon and Purify (and PurifyPlus) papers posted
How do you monitor reads and writes:

— insert statements before and after reads, writes in code
« can still be done with binaries

But this affects performance

— Without watching reads/writes, the overhead is small
— With reads/writes, can be 10X slowdown

— This is still OK for such a debugging tool

Homework 1

* Due Monday (Sep 29, 9 AM)
* Make sure you’ve started already

« If you're using Java 7 (or later), e.g., on EDLab:
javac -g -source 6 -target 6 *.java

Questions?

Coming Up

Paper selection and idea proposal assignment posted

Let’s look at the assignment

Key things to identify...

* When you read a paper

* When you listen to a lecture

* When you present a paper

* When you think of research ideas:

What is the scientific question?
What’s the key new idea that allows answering it?
How do you measure the success of the answer?

Automated Test Generation Idea:

Automatically generate tests for software

* Why?
— Find bugs more quickly
— Conserve resources
— No need to write tests

— If software changes, no need to maintain tests
— No need for testers?

9/24/14

The Problem

* Automated testing is hard to do
* Probably impossible for whole systems

* Certainly impossible without specifications

Pre- & Post-Conditions

* A pre-condition is a predicate
— assumed to hold before a function executes

* A post-condition is a predicate
— known to hold after a function executes

— whenever the pre-condition also holds

Example
Pre-condition: l.contains(x)

List remove (LinkedList 1, Element x) {
if (x == l.head())
return 1l.tail();
else
return

new LinkedList (l.head(),remove(l.tail(), x));

Post-condition: !(l.contains(x)

Does this post-condition hold?
How can the pre-condition change for the post condition to hold?

Are pre- and post-conditions a good idea?

Most useful if they are executable

— written in the programming language itself
— aspecial case of assertions

Recommended by software engineers
— and everyone who studies software engineering

Can reduce ambiguity in specification
May be somewhat imprecise and incomplete

— full pre- and post-conditions may be more complex than the code!
— still useful even if they do not cover every situation

Using Pre- and Post-Conditions

Pre-/Post-Conditions are specifications

* To perform a test:
— Generate an input (any input)

— Check that the test input satisfies the pre-
condition

— Run test

— Check that the test result satisfies the post-
condition

How can we generate tests?

* Randomized testing
* Mutation Testing

* Korat

9/24/14

Random Testing

* Feed random inputs to a program

* Observe whether it behaves “correctly”
— execution satisfies pre- and post-conditions
— or just doesn’t crash
(A simple pre/post condition)

Random Testing: Good and Bad News

* Randomization is highly effective
— easy to implement
— provably good coverage for enough tests

* But
— to say anything rigorous, we must be able to
characterize the distribution of inputs
— easy for string utilities
— harder for systems with more arcane input
for example, parsers for context-free grammars

What about staged components?

If we only control the input to the whole system (input 1),
can we test the circle well?

Mutation Analysis

* How do we know our test suite is any good?

* |dea: Test variations on the program
—for example, replace x > 0 with x < 0
—orreplace i by i+1 or i-1

« If the test suite is good, it should report failed
tests in the variants

Mutation testing is one way
to check automated testing

Mutation Analysis Summary

Mutate each statement in the program in
finitely many different ways

Each modification is one mutant
Check if a set of mutants is adequate

Find a set of test cases that distinguishes the
program from the mutants

9/24/14

What Justifies Mutation Testing?

Competent programmer assumption
— the program is close to correct

Mutations are representative of common errors
— off by one errors, wrong comparison errors

It formalizes test writing

— we write tests for corner cases and off-by-one errors.
There are an infinite number of them.
This way, we formalize the process.

This is a start
— testing does not stop here

Back to automated testing

Generate mutants of program P

Generate tests
(somehow)

For each test t

for each mutant M
if M(t) = P(t) mark M as killed

If the tests kill all mutants, the tests are adequate

Generating tests

This is the hard part!

Use weakest-preconditions
— work backwards from statement to inputs

Take short paths through loops
— try it O times, 1 time, 2 times

Generate symbolic constraints on inputs that must be
satisfied

Solve for inputs

What if a mutant is equivalent to the original?

No test will kill it

In practice, this is a real problem
—hard to solve

We could try to prove program equivalence
— but automating this is very hard
— undecidable problem

Korat: A way to generate tests

Use pre- and post-conditions to
generate tests automatically

Problem Korat tackles:

* There are infinitely many tests
— which finite subset should we pick?

* And even finite subsets can be too big
— we need a subset which yields good coverage

— without a lot of redundancy
* many tests will just test the same thing
* we need a way to select a diverse test suit

9/24/14

Small test case hypothesis:

If there exists a test case that
causes the program to fail,
there exists a small test case
that causes the program to fail.

If a list function works on lists of length O, 1, 2,
and 3, it probably works on all lists.

Korat’s insight

* Use the small test hypothesis

* We can often do a good job by testing all
inputs up to a certain, small size

How do we generate test inputs?

class BinaryTree({ * Use the types!

Node root;
class Node {
Node left;
Node right;
}

* The class declaration
shows what values (or
null) can fill each field

* Simply enumerate all
possible shapes with a
fixed set of Nodes.

A simple algorithm: put it all together

¢ User selects maximum input size k

* Generate all possible inputs up to size k

* Discard inputs where pre-condition is false
* Run the program on remaining inputs

* Check the results using the post-condition

Example: Binary Trees

* How many binary trees are there of size <= 3?

* 3 nodes
— 2 slots per node (left and right)

— 4 possible values (one of the nodes or null) for
* each slot
* the root

4*(4*4)73 =2/14 = 16,384 possible trees

That’s a lot of trees!

* The number of trees explodes rapidly
> 1,000,000 trees of size <=4
> 16,000,000 trees of size <=5

* Limits us to testing only very small input sizes

¢ Can we do better?

9/24/14

Actually, I lied
* 16,384 trees is a gross overestimate! A
A //’ N
* Many of the shapes are not trees: | ||

* Many trees are isomorphic

e)) 4 D o ™\ o D y. - D ~ D
000 009

How many trees really?

* There are only 9 distinct binary trees on 3 or
fewer nodes

Use our constraints to help us

* We want to avoid generating trees that don’t
satisfy the pre-condition in the first place.

* That means we must use the pre-condition to
guide the generation of tests

* And use the constraints on distinctness of
inputs

Observe the pre-condition

* Instrument the pre-condition
—add code to observe it at runtime
— in particular, record fields of the input the
precondition accesses
* Observation:

— if the pre-condition does not access a field, then
the result of the pre-condition did not depend on
that field.

Binary tree example

* Pre-condition checks
—if the root is null
return false
— all nodes must be unique
* no cycles
* every node has one parent
(except the root, which has 0)

Example:

* Consider the following “tree”

@

¢ OV

* The pre-condition accesses only the root

— since the root is null, every possible shape for the
other nodes would yield the same result

* This single input eliminates 25% of the tests

9/24/14

Karat enumerates the tests

* Start with the smallest
* Next test generated by
— expanding a null pointer field

— backtracking if all possibilities for a field are
exhausted

* Never enumerate parts of input not examined
by the precondition

Isomorphic tests

* We also want to avoid isomorphic tests
— distinct trees with the same shape

* Number all objects within a type

Number all fields

—in the pre-condition access order

When backtracking on field f

Check if next object in ordering results in

lexicographically least of structures of this
shape

Error specifications

We can have two specifications:
* Normal behavior specification

* Error behavior specification

under what circumstances exceptions are thrown

Korat Results

* Eliminating redundant tests is very effective
—there are only 429 binary trees of size 7
— infeasible to test on trees this large without the
techniques for eliminating redundant tests
* Time to generate and run all tests usually
seconds, sometimes minutes

Strengths

* Good for

— linked data structures
— small, easily specified procedures and methods
— unit testing

Weaknesses (conditions)

Only as good as the pre- and post-conditions

Pre-condition: |.contains(x)

List remove (LinkedList 1, Element x) {
if (x == l.head()
return l.tail();
else
return

new LinkedList (1.head(),remove(l.tail(), x));

}

Post-condition: !(l.contains(x)

9/24/14

Weaknesses (conditions)

Only as good as the pre- and post-conditions

Pre-condition: !(l.isEmpty())

List remove (LinkedList 1, Element x) {
if (x == l.head())
return l.tail();
else
return
new LinkedList (1.head(),remove(l.tail(), x));
}

Post-condition: l.isList()

Weaknesses (large data structures)

* Strong when we can enumerate all
possibilities
— four nodes, two edges per node

Weaker when enumeration is weak
— integers

— floating point numbers

— strings

Weakness (nondeterminism)

Not as good for nondeterministic methods

For example, what about a condition that says
“Every packet sent is eventually acknowledged
by the receiver”?

Test generation

* Automatic test generation is a good idea

* Types languages are a plus for generation
— C++, Java, UML (C, Lisp do not provide needed
types)
¢ Works well for unit tests
* Being adopted in industry
* Promising future

