More Course Overview: Models, Tests, Bugs, and Symbols

Some logistics

- Everyone who wants to be registered is, right?
- · Homework 1 will be posted tonight or tomorrow
- Due September 29, by 9 AM on moodle
- Requires running linux or "linux"
 - you all have Edlab access, if you want it

Next week

- Monday: 10:35 AM @CS142
 - Armand (TA) will be leading an interactive section
 - Play SimSE (think SimCity

but with software engineers)

- Learn about eXtreme programming
- Wednesday: No class, work on HW1

Last time

What did we talk about?

Static analysis

- Using the source code to improve a program
- Manual code reviews and inspections
- · Automatic inference of properties, proving

Improve the software quality

Dynamic analysis

- Using the program executions to improve the program
- Manual with debuggers, etc.
- Automatic inference over logged behavior
- Does not need source code or even binaries

Improve the software quality

Any questions?

Areas we will cover in this course

- Static analysis
- · Dynamic analysis
- · Model checking
- · Mutation testing
- · Bug localization
- · Symbolic execution

areas for your projects

As we go over each topic...

- · Think whether this sounds interesting
- Think about what kind of a tool you could make that uses this
- You are all programmers: think about things you've done while programming that were hard, and how these kinds of analysis might make it easier

Model checking

- · I actually meant:
 - Model checking
 - Model inference
 - Model simulation

Model inference

problem:

I have a system (or a log of executions).

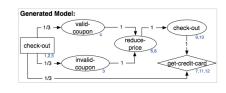
I want a small, descriptive model of what the system does.

Model can be used to **understand** the system, debug, detect anomalies, document.

Logs are hard to read

1 | 74.15.155.103 | [06/Jan/2011:07:24:13] "GET HTTP/1.1 /check-out.php" | 2 | 13.15.232.201 | [06/Jan/2011:07:24:19] "GET HTTP/1.1 /check-out.php" | 3 | 13.15.232.201 | [06/Jan/2011:07:25:33] "GET HTTP/1.1 /invalid-coupon.php" | 4 | 74.15.155.103 | [06/Jan/2011:07:25:05] "GET HTTP/1.1 /invalid-coupon.php" | 4 | 74.15.155.103 | [06/Jan/2011:07:28:43] "GET HTTP/1.1 /check-out.php" | 4 | 74.15.155.103 | [06/Jan/2011:07:28:14] "GET HTTP/1.1 /reduce-price.php" | 7 | 74.15.155.103 | [06/Jan/2011:07:30:22] "GET HTTP/1.1 /reduce-price.php" | 8 | 13.15.232.201 | [06/Jan/2011:07:30:25] "GET HTTP/1.1 /check-out.php" | 9 | 74.15.155.103 | [06/Jan/2011:07:30:25] "GET HTTP/1.1 /check-out.php" | 1 | 13.15.232.201 | [06/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php" | 1 | 13.15.232.201 | 106/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php" | 1 | 13.15.232.201 | 106/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php" | 1 | 13.15.232.201 | 106/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php" | 1 | 13.15.232.201 | 106/Jan/2011:07:31:40 | 106

Model inference


• First, parse out the executions

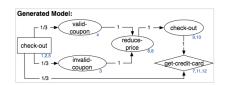
$$\label{eq:check-out} \begin{split} \text{check-out} & \rightarrow \text{valid-coupon} \rightarrow \text{check-out} \rightarrow \text{reduce-price} \rightarrow \text{get-credit-card} \\ \text{check-out} & \rightarrow \text{invalid-coupon} \rightarrow \text{check-out} \rightarrow \text{reduce-price} \rightarrow \text{get-credit-card} \\ \text{check-out} & \rightarrow \text{get-credit-card} \end{split}$$

· ...hard to understand

Infer the model

• Magic!

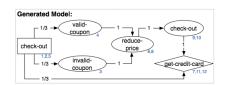
So what's the magic?


- Lots of ways to do it:
 - Try merging the executions into a small model
 - Mine properties then build a model from the properties alone
 - Use static or dynamic analysis to determine what events can legally take place after others

K-Tails

- let's use k=1 as an example
- merge two states if their name is the same
- (k=2 means merge two states if their name, and all the states to which they have transitions are "the same")
- and so on for larger k

Model checking


• Given a property and a model, check if the model satisfies that property

• Reduce-price always followed by get-credit-card?

Model simulation

• Given a model, you can generate new executions that have not been observed before!

Mutation testing

- · Evaluate the tests
 - not the program!
 - not a type of testing!
 - does not improve a program directly; improves tests!

Mutation

- Take a program
- Create a mutant with one or a few small changes:
 - change a + to a -
 - add/subtract 1 somewhere
 - increment/decrement a loop counter
 - delete a line
 - insert a line from one place in another
- · Repeat to create many mutants

Why create mutants?

- Suppose you have a program and a test suite
- All the tests pass
- What does that mean about your program?
- 1. Program is correct
- 2. Tests only test parts of the program that are correct and the rest, who knows
- 3. Tests and program may be written by the same person, using the same *implicit* assumptions

Let's write some tests

```
// returns the factorial of the input n
int factorial (int n) {
  if (n <= 0)
    return 1;
  if (n == 1)
    return 1;
  else
    return n * factorial(n-1);
}</pre>
```

OK, so how do we test the tests?

- Run the tests on the main program
- Run the tests on the mutants
 - what if the tests pass?

Mutation testing evaluates the tests

- If a test "kills a mutant" then that's a good test
- If some mutants aren't killed, the test suite is lacking
- · Solution: write more tests!
- Is it OK to write more tests until all mutants are killed and then stop?

Consider this mutant

```
// returns the factorial of the input n
int factorial (int n) {
  if (n <= 0)
    return 1;
  if (n == 1)
    return 1;
  else
    return n * factorial(n+1);
}</pre>
```

Consider this mutant

```
// returns the factorial of the input n
int factorial (int n) {
   if (n <= 2)
     return 1;
   if (n == 1)
     return 1;
   else
     return n * factorial(n-1);
}</pre>
```

Consider this mutant

```
// returns the factorial of the input n
int factorial (int n) {
  if (n == 0)
    return 1;
  if (n == 1)
    return 1;
  else
    return n * factorial(n-1);
}
```

Bug localization

Narrowing down the most likely place to contain a bug

Failure-inducing input

- This HTML input makes Mozilla crash (segmentation fault).
- Which portion is the failure-inducing one?

ank you to Curino and Giusti for contributing to these slides

Delta Debugging: Try half the input

• Will the program still crash?

ed disprist valigation

(Editor land Page 19 Ministry History 11 Windows) 1 Windows 1 Hospital Walley Validates 1 Hospital Validates 1 Hospital Walley Validates 1 Hospital Walley Validates 1 Hospital Validates 1

Minimizing via binary search

- 57 test to simplify the 896 line HTML input to the "<SELECT>" tag that causes the crash
- Each character is relevant (as shown from line 20 to 26)
- Only removes deltas from the failing test

1	<select.< th=""><th>NAME=</th><th>'prio</th><th>rity"</th><th>MULTI</th><th>PLE.</th><th>SIZE=7</th><th>> X</th></select.<>	NAME=	'prio	rity"	MULTI	PLE.	SIZE=7	> X
2	<select,< th=""><th>NAME=</th><th>prio</th><th>rity"</th><th>MULTI</th><th>PLE</th><th>SIZE=7</th><th>> 1</th></select,<>	NAME=	prio	rity"	MULTI	PLE	SIZE=7	> 1
3	<select.< th=""><th>NAME=</th><th>'prio</th><th>rity"</th><th>MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select.<>	NAME=	'prio	rity"	MULTI	PLE_	SIZE=7	> 🗸
4	<select.< th=""><th>NAME=</th><th>'prio</th><th>rity"</th><th>MULTI</th><th>PLE,</th><th>SIZE=7</th><th>> 1</th></select.<>	NAME=	'prio	rity"	MULTI	PLE,	SIZE=7	> 1
5	<select.< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE</th><th>SIZE=7</th><th>> X</th></select.<>	NAME=	"prio	rity"	MULTI	PLE	SIZE=7	> X
6	<select.< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE</th><th>SIZE=7</th><th>> X</th></select.<>	NAME=	"prio	rity"	MULTI	PLE	SIZE=7	> X
7	<select,< th=""><th>NAME=</th><th>prio</th><th>rity"</th><th>MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select,<>	NAME=	prio	rity"	MULTI	PLE_	SIZE=7	> 🗸
8	<select,< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE</th><th>SIZE=7</th><th>> 1</th></select,<>	NAME=	"prio	rity"	MULTI	PLE	SIZE=7	> 1
9	<select.< th=""><th>NAME=</th><th>prio</th><th>rity"</th><th>MULTI</th><th>PLE</th><th>SIZE=7</th><th>> V</th></select.<>	NAME=	prio	rity"	MULTI	PLE	SIZE=7	> V
10	<select_< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> X</th></select_<>	NAME=	"prio	rity"	_MULTI	PLE_	SIZE=7	> X
11	<select< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE</th><th>SIZE=7</th><th>> 🗸</th></select<>	NAME=	"prio	rity"	MULTI	PLE	SIZE=7	> 🗸
12	<select.< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select.<>	NAME=	"prio	rity"	MULTI	PLE_	SIZE=7	> 🗸
13	<select.< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 1</th></select.<>	NAME=	"prio	rity"	_MULTI	PLE_	SIZE=7	> 1
14	<select,< th=""><th>NAME=</th><th>prio</th><th>rity"</th><th>_MULTI</th><th>PLE,</th><th>SIZE=7</th><th>> 🗸</th></select,<>	NAME=	prio	rity"	_MULTI	PLE,	SIZE=7	> 🗸
15	<select_< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select_<>	NAME=	"prio	rity"	MULTI	PLE_	SIZE=7	> 🗸
16	<select_< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> X</th></select_<>	NAME=	"prio	rity"	_MULTI	PLE_	SIZE=7	> X
17	<select.< th=""><th>NAME=</th><th>prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> X</th></select.<>	NAME=	prio	rity"	_MULTI	PLE_	SIZE=7	> X
18	<select,< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>MULTI</th><th>PLE,</th><th>SIZE=7</th><th>> X</th></select,<>	NAME=	"prio	rity"	MULTI	PLE,	SIZE=7	> X
19	<select_< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>LMULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select_<>	NAME=	"prio	rity"	LMULTI	PLE_	SIZE=7	> 🗸
20	<select< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select<>	NAME=	"prio	rity"	_MULTI	PLE_	SIZE=7	> 🗸
21	<select.< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>_MULTI</th><th>PLE.</th><th>SIZE=7</th><th>> 1</th></select.<>	NAME=	"prio	rity"	_MULTI	PLE.	SIZE=7	> 1
22	<select< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>LMULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select<>	NAME=	"prio	rity"	LMULTI	PLE_	SIZE=7	> 🗸
23	<select.< th=""><th>NAME=</th><th>prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 🗸</th></select.<>	NAME=	prio	rity"	_MULTI	PLE_	SIZE=7	> 🗸
24	<select.< th=""><th>NAME=</th><th>"prio</th><th>rity"</th><th>_MULTI</th><th>PLE_</th><th>SIZE=7</th><th>> 1</th></select.<>	NAME=	"prio	rity"	_MULTI	PLE_	SIZE=7	> 1
	<select< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></select<>							
26	<select< th=""><th>NAME=</th><th>'prio</th><th>rity"</th><th>_MULTI</th><th>PLE</th><th>SIZE=7</th><th>> X</th></select<>	NAME=	'prio	rity"	_MULTI	PLE	SIZE=7	> X

Impact analysis

- Run the code on passing test cases
- Run the code on failing test cases
- · Keep track of which lines execute
- Lines that executes only on passing test cases are OK. So are lines that execute on both.
- Lines that only execute on failing test cases are suspicious.

What else can you do to localize a bug?

Regressions: suppose a test used to pass and now fails.

- consider the latest changes
- do delta debugging on the changes

Can we automatically fix bugs?

Take a program that passes most test cases and fails one or two, and tweak it

- write (tweak) a very similar program
(with minimal change) that passes all the test

[See Weigner et al. Automatically Engling Batches Using Genetic Programming. ICSE 2006.]

localizing and auto-fixing: great project areas

Symbolic execution

- "Think" about the code, rather than execute it, but execute it anyway. But don't use numbers. Just think about the numbers.
- · Clear, right?

```
void test(int x, int y) {
    if (x > 0) {
        if (y == hash(x))
        S0;
        else
        S1;
        if (x > 3 & x > 10)
        S3;
        else
        S4;
    }
}

Thank you to Willem Viser for contributing to these slides
```

Why symbolic execution?

- A different way to reasoning about the code
- Can determine what parts are reachable and under what conditions
- Can be compared to developers' expectations about those conditions
- Can be used to document
 - For example, "this method can only be called if x>0" or "this method throws an exception is pts == null"

Next time

Dynamic analysis for homework 1