More Course Overview:
Models, Tests, Bugs, and Symbols

9/10/14

Some logistics

* Everyone who wants to be registered is, right?

* Homework 1 will be posted tonight or tomorrow
* Due September 29, by 9 AM on moodle
* Requires running linux or “linux”

— you all have Edlab access, if you want it

Next week

* Monday: 10:35 AM @CS142
— Armand (TA) will be leading an interactive section
— Play SimSE (think SimCity
but with software engineers)
— Learn about eXtreme programming

¢ Wednesday: No class, work on HW1

Last time

What did we talk about?

Static analysis

* Using the source code to improve a program
* Manual code reviews and inspections
* Automatic inference of properties, proving

Improve the software quality

Dynamic analysis

* Using the program executions to improve the
program

* Manual with debuggers, etc.
* Automatic inference over logged behavior
* Does not need source code or even binaries

Improve the software quality|




9/10/14

Areas we will cover in this course

Model checking
Mutation testing
Bug localization
Symbolic execution

areas for your projects

As we go over each topic...

* Think whether this sounds interesting

* Think about what kind of a tool you could
make that uses this

* You are all programmers:
think about things you’ve done while
programming that were hard, and how these
kinds of analysis might make it easier

Model checking

| actually meant:
— Model checking
— Model inference
— Model simulation

Model inference

problem:

| have a system (or a log of executions).
I want a small, descriptive model of what the

system does.

Model can be used to
, detect

the system,

Q
OONDU BN

Logs are hard to read

74.15.155.103 [06/Jan/2011:07:24:13] "GET HTTP/1.1 /check-out.php”
13.15.232.201 [06/Jan/2011:07:24:19) "GET HTTP/1.1 /check-out.php"
13.15.232.201 [06/Jan/2011:07:25:33] "GET HTTP/1.1 /invalid-coupon.php"
74.15.155.103 [06/Jan/2011:07:27:06] "GET HTTP/1.1 Avalid-coupon.php"
74.15.155.199 [06/Jan/2011:07:28:43] "GET HTTP/1.1 /check-out.php”
74.15.155.103 [06/Jan/2011:07:28:14] "GET HTTP/1.1 /reduce-price.php"
74.15.155.199 [06/Jan/2011:07:29:02] "GET HTTP/1.1 /get-credit-card.php"”
13.15.232.201 [06/Jan/2011:07:30:22] "GET HTTP/1.1 freduce-price.php"”
74.15.155.103 [06/Jan/2011:07:30:56] "GET HTTP/1.1 /check-out.php”
13.15.232.201 [06/Jan/2011:07:31:17] "GET HTTP/1.1 /check-out.php"
13.15.232.201 [06/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php"
74.15.155.103 [06/Jan/2011:07:31:44] "GET HTTP/1.1 /get-credit-card.php"”

-
[=)

-
=

-
N




Model inference

* First, parse out the executions

check-out = valid-coupon = check-out - reduce-price > get-credit-card
check-out = invalid-coupon = check-out = reduce-price = get-credit-card

check-out - get-credit-card

¢ ..hard to understand

9/10/14

Infer the model

* Magic!

Generated Model
o »’
couon
reduce o
check-out price
125 lig- _T
R CEE ] <
coupon__ 71,12

s 3

So what’s the magic?

* Lots of ways to do it:
— Try merging the executions into a small model

— Mine properties then build a model from the
properties alone

— Use static or dynamic analysis to determine what
events can legally take place after others

K-Tails

* let’s use k=1 as an example
* merge two states if their name is the same

* (k=2 means merge two states if their name,
and all the states to which they have
transitions are “the same”)

* and so on for larger k

Model checking

* Given a property and a model, check if the
model satisfies that property

Generated Model

cou pon
reduce
check-out nce
13 Iﬂ‘la"d e(-credlt»car
cou pon 701,12
3

. Reduce—price always followed by get-credit-card?

Model simulation

* Given a model, you can generate new
executions that have not been observed before!

Generated Model
couon
reduce

check-out nce

125 - —
coupon
3

13

71,12
¥




Mutation testing

* Evaluate the tests
— not the program!
— not a type of testing!
— does not improve a program directly; improves tests!

9/10/14

Mutation

* Take a program
* Create a mutant with one or a few small
changes:
—changea+toa-
— add/subtract 1 somewhere
— increment/decrement a loop counter
— delete a line
—insert a line from one place in another
* Repeat to create many mutants

Why create mutants?

* Suppose you have a program and a test suite
All the tests pass

What does that mean about your program?

1. Program is correct

2. Tests only test parts of the program that are
correct and the rest, who knows

3. Tests and program may be written by the same
person, using the same implicit assumptions

Let’s write some tests

// returns the factorial of the input n
int factorial (int n) {
if (n <= 0)
return 1;
if (n ==1)
return 1;
else
return n * factorial(n-1);

OK, so how do we test the tests?

* Run the tests on the main program

¢ Run the tests on the mutants
— what if the tests pass?

Mutation testing evaluates the tests

If a test “kills a mutant” then that’s a good
test

¢ If some mutants aren’t killed, the test suite is
lacking

* Solution: write more tests!

* Is it OK to write more tests until all mutants
are killed and then stop?




Consider this mutant

// returns the factorial of the input n
int factorial (int n) {
if (n<=0)
return 1;
if (n==1)
return 1;
else
return n * factorial(n+1);

}

9/10/14

Consider this mutant

// returns the factorial of the input n
int factorial (int n) {
if (n<=2)
return 1;
if (n==1)
return 1;
else
return n * factorial(n-1);

}

Consider this mutant

// returns the factorial of the input n
int factorial (int n) {
if (n==0)
return 1;
if (n==1)
return 1;
else
return n * factorial(n-1);

}

Bug localization

* Narrowing down the most likely place to
contain a bug

Failure-inducing input

* This HTML input makes Mozilla crash
(segmentation fault).

* Which portion is the failure-inducing one?

Delta Debugging: Try half the input

Will the program still crash?




Minimizing via binary search

| <SELECT_NAME="priority", MULTIPLE_SIZE=7> X
2 <8 " _MULTIPLE_SIZE=7> ¢
" MULTIPLE, SIZE=7> ¢

* 57 test to simplify the
896 line HTML input to
the “<SELECT>” tag that
causes the crash

TIPLE_SIZE=T> X
PLE_SIZE=T> X
E=7>

1 7>
LE_SIZE=7> ¢

* Each character is
relevant (as shown from
line 20 to 26)

* Only removes deltas
from the failing test

9/10/14

Impact analysis

* Run the code on passing test cases
* Run the code on failing test cases
* Keep track of which lines execute

* Lines that executes only on passing test cases
are OK. So are lines that execute on both.

* Lines that only execute on failing test cases
are suspicious.

What else can you do to localize a bug?

Regressions: suppose a test used to pass and
now fails.

— consider the latest changes
— do delta debugging on the changes

Can we automatically fix bugs?

Take a program that passes most test cases
and fails one or two, and tweak it
— write (tweak) a very similar program
(with minimal change) that passes all the test

[see Weimer et al., Finding Patches Using Genetic Programming, ICSE 2009]

localizing and auto-fixing:

Symbolic execution
* “Think” about the code, rather than execute

it, but execute it anyway. But don’t use
numbers. Just think about the numbers.

¢ Clear, right?

void test(int x, int y) {
if (x> 0){

if (y == hash(x))
50, e T

else

S1; 1
if (x> 3 &&y>10)

53; e
else
st




9/10/14

Why symbolic execution? Next time

A different way to reasoning about the code
Can determine what parts are reachable and Dynamic analysis for homework 1
under what conditions

Can be compared to developers’ expectations
about those conditions

Can be used to document

— For example, “this method can only be called if x>0”
or “this method throws an exception is pts == null”




