Reasoning about programs

| [vem T ARTCE?
/ v o 1 |
o e Your

¢ coooott vEY, TvE
GOT THIS NEW MOBIE
R? | | versenoF r sie!

CrECKTouTt
N

P
|/ vl ThASeRveR!

Reasoning about code

* Determine what facts are true during execution
—-x>0
— for all nodes n: n.next.previous ==
— array a is sorted
—x+y==
—if x I=null, then x.a>x.b
* Applications:
— Ensure code is correct (via reasoning or testing)
— Understand why code is incorrect

4/16/13

Ways to verify your code

The hard way:
— Make up some inputs
— If it doesn't crash, ship it
— When it fails in the field, attempt to debug
¢ The easier way:
— Reason about possible behavior and desired outcomes
— Construct simple tests that exercise that behavior
* Another way that can be easy
— Prove that the system does what you want
* Rep invariants are preserved
* Implementation satisfies specification
— Proof can be formal or informal (we will be informal)
— Complementary to testing

Forward reasoning

You know what is true before running the code
What is true after running the code?

Given a precondition, what is the postcondition?

¢ Applications:
Representation invariant holds before running code
Does it still hold after running code?
¢ Example:
// precondition: x is even
X=X+3;
y=2x
x=5;
// postcondition: ??

Backward reasoning

You know what you want to be true after running the code
What must be true beforehand in order to ensure that?

Given a postcondition, what is the corresponding precondition?

Applications:
(Re-)establish rep invariant at method exit: what’s required?
Reproduce a bug: what must the input have been?
¢ Example:
// precondition: ??
X=X+3;
y=2x
x=5;
// postcondition: y > x
How did you (informally) compute this?

Forward vs. backward reasoning

* Forward reasoning is more intuitive for most people
— Helps understand what will happen (simulates the code)

— Introduces facts that may be irrelevant to goal
Set of current facts may get large

— Takes longer to realize that the task is hopeless
¢ Backward reasoning is usually more helpful

— Helps you understand what should happen

— Given a specific goal, indicates how to achieve it

— Given an error, gives a test case that exposes it

4/16/13

Forward reasoning example

assert x>=0;
i=x;

//x20 & i=x
z2=0;
//x20 & i=x & 2=0
while (i 1= 0) { <« What property holds here?
z=z+1;
i=i-1;

< What property holds here?

}

//x20 & i=0 & z=x
assert x == z;

Backward reasoning

Technique for backward reasoning:

* Compute the weakest precondition (wp)

* There is a wp rule for each statement in the
programming language

* Weakest precondition yields strongest
specification for the computation
(analogous to function specifications)

Assignment

// precondition: ??

X=e,

// postcondition: Q
Precondition: Q with all (free) occurrences of x
replaced by e
* Example:

// assert: ??

x=x+1;

// assertx >0

Precondition = (x+1) >0

Method calls

// precondition: ??
x = foo();
// postcondition: Q

* If the method has no side effects: just like
ordinary assignment

* If it has side effects: an assignment to every
variable in modifies

Use the method specification to
determine the new value

If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Essentially case analysis:
wp(“if (b) S1 else $2”7, Q) =
(b = wp(“S1”, Q)
A - b= wp(“S2”,Q))

If: an example

// precondition: ??
if (x==0) {
x=x+1;
}else {
x = (x/x);
}
// postcondition: x =0
Precondition:
wp(“if (x==0) {x = x+1} else {x = x/x}", x = 0) =
=(x=0=>wp(“x=x+1",x=0)

& x=0=>wp(“x=x/x",x=z0))
=(x=0=>x+1=20) & (x=0=>x/x=0)
=1=0&1=0
=true

Reasoning About Loops

* Aloop represents an unknown number of paths
— Case analysis is problematic
— Recursion presents the same issue

¢ Cannot enumerate all paths
— That is what makes testing and reasoning hard

Understanding loops by induction

* We just made an inductive argument

Inducting over the number of iterations
* Computation induction

Show that conjecture holds if zero iterations

Assume it holds after n iterations and show it holds after n+1
* There are two things to prove:

Some property is preserved (known as “partial correctness”)
loop invariant is preserved by each iteration
The loop completes (known as “termination”)

The “decrementing function” is reduced by each iteration

4/16/13

Loops: values and termination

Ilassertxz0&y=0

while (x !'=y) {
y=y+1;

}
Il assertx =y

1) Pre-assertion guarantees that x>y
2) Every time through loop
x =y holds and, if body is entered, x >y
y is incremented by 1
X is unchanged
Therefore, y is closer to x (but x = y still holds)

3) Since there are only a finite number of integers
between x and y, y will eventually equal x

4) Execution exits the loop as soonasx =y

Loop invariant for the example

Ilassertxz0&y=0

while (x !=y) {
y=y +1;

}
Il assertx =y

* So, what is a suitable invariant?

* What makes the loop work?
Li=x=zy

1) x=20 & y=0=1
2) Ll & X#y{y = y+1;}|_|
3) (LI & =(x=y) = x=y

Is anything missing?

llassertxz0&y =0
while (x '=y) {
y=y +1;

}
Il assertx =y

Does the loop terminate?

Total Correctness via Well-Ordered Sets

* We have not established that the loop terminates
* Suppose that the loop always reduces some variable’s
value. Does the loop terminate if the variable is a
— Natural number?
— Integer?
— Non-negative real number?
— Boolean?
— ArrayList?

* The loop terminates if the variable values are

(a subset of) a well-ordered set
— Ordered set

— Every non-empty subset has least element

Decrementing Function

* Decrementing function D(X)
— Maps state (program variables) to some well-ordered set
— This greatly simplifies reasoning about termination

* Consider: while (b) S;
* We seek D(X), where X is the state, such that
1. An execution of the loop reduces the function” s value:
LI & b {8} D(X,05) < D(X}e)
2. If the function’s value is minimal, the loop terminates:
(LI & D(X) = minVal) = =b

4/16/13

Proving Termination

/lassertxz08&y=0

I/l Loop invariant: x =y

I/l Loop decrements: (x-y)

while (x '=y) {
y=y+1;

}

Il assertx =y

* Is “x-y” a good decrementing function?

1. Does the loop reduce the decrementing function’s value?
// assert (y = x); let d,,o = (x =)
y=y+1;
// assert (Xpost - ypost) < dpre

2. If the function has minimum value, does the loop exit?
(xzy&x-y=0)=(x=y)

Choosing Loop Invariant

* For straight-line code, the wp (weakest precondition)
function gives us the appropriate property
* For loops, you have to guess:
— The loop invariant
— The decrementing function
* Then, use reasoning techniques to prove the goal property
« If the proof doesn't work:
— Maybe you chose a bad invariant or decrementing function
* Choose another and try again
— Maybe the loop is incorrect
* Fix the code
* Automatically choosing loop invariants is a research topic

In practice

| don’t routinely write loop invariants

| do write them when | am unsure about a loop and
when | have evidence that a loop is not working

— Add invariant and decrementing function if missing

— Write code to check them

— Understand why the code doesn't work

— Reason to ensure that no similar bugs remain

More on Induction

* Induction is a very powerful tool

2" =1+§2k'l
k=1

Proof by induction:

1
For n=1, 1+22"'l =1+2°=1+1=2=2"

k=1

Inductive step

m+1

Assume 2" =1+Ezk‘1 and show that 2™ =1+22k‘l

k=1 k=1
m+l m
2m+l=1+22k71=]+Ezk71+2m=2m+2m=2X2m=2m+l
k=1 k=1

Is Induction Too Powerful?

4/16/13

