Midterm Review and
Software Architecture

Course updates

Homework 4 was due today
Homework 5 will be due Nov 27

Final report due Dec 6
— final presentations Dec 2, in class

Midterm next Monday, Nov 18, in class

Today’s plan

* Midterm review
— What kinds of questions to expect
— Examples of questions
— How to attack the hard questions
— Topics to be covered
— Your questions

e Software architecture

What’s the midterm like?

* Some true/false questions

 Some multiple choice questions

* Some reasoning questions

True / False Example

Automated debugging techniques are robust
enough today to eliminate the need for writing
software tests, although some human effort is
still needed to verify the quality (and
correctness) of the automatically generated
fixes.

Multiple Choice Example

When working on a project in a team, new tests
should be written:

A. By no more than 10% of the team
B. Only during a special testing phase

C. Only after a good portion of the code has
been written

D. Both manually and with automated tools
E. Whenever a bug is discovered

Reasoning

* Reasoning are the harder questions that
require abstraction and application of what
you learnt.

* Reasoning questions will largely cover the
papers presented in class, and the homework
assignments

Reasoning Example

Consider this simple concurrent program.
Does it have any races?

Why does CheckSync, from homework 4, report
the following race?

When Solving Reasoning Problems

* Important to pause for a moment to think
about how to proceed.

* Plan your attack and evidence you will use to
support your answer.

* You will have scratch paper to use to organize
your thoughts (scratch will not be graded).

Come up with an answer, and its support, and
write it clearly, concisely in the provided space.

Topics to be covered

* Dynamic analysis
— Daikon and Purify

 Automated Bug Fixing

— PAR, GenProg, redundant methods, contracts,
SemFix

* Test generation

— Korat, Chronicler (field failures),
web security testing, invariants to localize bugs,
bias in bug prediction,
broad test sequence generation

Topics to be covered

* Pair Programming

e Speculative Analysis
— Quick fix scout
— Crystal

* Performance debugging
— gprof
— trend profiling
— empirical complexity

Topics to be covered

* |nnovative software tools
— Using naturalness of language to predict software

— RefaFlex, drag-and-drop, and synthesis for
refactoring

— sTile and smart redundancy for privacy and reliability
— Data clone detection

e Architecture

— Differences, drift, and decay between planned and
implemented architecture

Now your chance

...to ask me questions about these topics

dynamic analysis
automated bug fixing
test generation

pair programming

speculative analysis
performance debugging
innovating software tools
architecture

Software Architecture

Architecture

=_J gﬂ——_“—
”

MIT Stata Center by Frank Gehry

Why architecture?

The basic problem

Requirements

M How do you bridge the gap
between requirements
M and code?

One answer

N

a miracle happens

N

A better answer

Requirements

Provides a high-level
framework to
build and evolve the

system

What does an architecture look like?

Box-and-arrow diagrams

2!

----- -).
(.
.

’\ @ —

~
----- 'h@.\ “ h
“an Y .

) Very common and hugely valuable.
But, what does a box represent?

A

Parallel application

«

+
4 "
’-- !
s
-
'
.

an arrow?
a layer?

adjacent boxes?

Legend:
Component

=== Connector

Communicaion
Link

Requests

/|

|

<Notiﬁcaxions

An architecture:
components and connectors

Components define the basic computations
comprising the system and their behaviors

— abstract data types, filters, etc.
Connectors define the interconnections between
components

— procedure call, event announcement,
asynchronous message sends, etc.

The line between them may be fuzzy at times

— Ex: A connector might (de)serialize data, but can it
perform other, richer computations?

A good architecture

Satisfies functional and performance
requirements

Manages complexity
Accommodates future change
Is concerned with

— reliability, safety, understandability, compatibility,

robustness, ...

23

Divide and conquer

e Benefits of decomposition:
— Decrease size of tasks
— Support independent testing and analysis
— Separate work assignments
— Ease understanding

e Use of abstraction leads to modularity

— Implementation techniques: information hiding,
interfaces

* To achieve modularity, you need:
— Strong cohesion within a component
— Loose coupling between components
— And these properties should be true at each level

Qualities of modular software

 decomposable
— can be broken down into pieces

e composable
— pieces are useful and can be combined

* understandable
— one piece can be examined in isolation

* has continuity
— change in regs affects few modules

* protected / safe
> — an error affects few other modules

Interface and implementation

* public interface: data and behavior of the object that
can be seen and executed externally by "client" code

* private implementation: internal data and methods in
the object, used to help implement the public
interface, but cannot be directly accessed

* client: code that uses your class/subsystem

Example: radio

* public interface: the speaker, volume buttons, station dial

* private implementation: the guts of the radio; the
transistors, capacitors, voltage readings, frequencies, etc.
that user should not see

26

UML diagrams

 UML = universal modeling language

e A standardized way to describe (draw)
architecture

 Widely used in industry

Properties of architecture

Coupling
Cohesion

Style conformity
Matching
Errosion

Loose coupling

* coupling assesses the kind and quantity of
interconnections among modules

* Modules that are loosely coupled (or uncoupled)
are better than those that are tightly coupled

* The more tightly coupled two modules are, the
harder it is to work with them separately

Tightly or loosely coupled?

User Interface

-Enéihd2

-End4

-End3

—

Data Storage

-End9

Graphics

-End21

-End6

-End5

-End11

—

* A -End26 {__

-End23
* -End24

Application Level Classes

-Eng

13

-End7

-Endi2

-End14

-End10

Business Rules

-End15

-End8

-End19

-End20

* -End18
-End17

-End16

Enterprise Level Tools

-End22

Tightly or loosely coupled?

User Interface| €

Graphics

-End5
* -End3

-End6

Data Storage| == |Application Level Classes

-End15
-End7

-End16

-End13

-End14

Business Rules| ™" Enterprise Level Tools

-End8

-End4

Strong cohesion

cohesion refers to how closely the operations
in a module are related

Tight relationships improve clarity and
understanding

Classes with good abstraction usually have
strong cohension

No schizophrenic classes!

Strong or weak cohesion?

class Employee {

public:

FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;

Béol IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);

.éqIQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;

An architecture helps with

System understanding: interactions between modules
Reuse: high-level view shows opportunity for reuse

Construction: breaks development down into work items;
provides a path from requirements to code

Evolution: high-level view shows evolution path
Management: helps understand work items and track progress

Communication: provides vocabulary; pictures say 102 words

Architectural style

Defines the vocabulary of components and connectors
for a family (style)
Constraints on the elements and their combination

— Topological constraints (no cycles, register/announce
relationships, etc.)

— Execution constraints (timing, etc.)
By choosing a style, one gets all the known properties
of that style (for any architecture in that style)

— Ex: performance, lack of deadlock, ease of making
particular classes of changes, etc.

Styles are not just boxes and arrows

* Consider pipes & filters, for example (Garlan and Shaw)
— Pipes must compute local transformations
— Filters must not share state with other filters
— There must be no cycles
* If these constraints are violated, it’s not a pipe & filter system
— One can’t tell this from a picture
— One can formalize these constraints

scan —) parse —) optimize) generate

The design and the reality

* The code is often less clean than the design

 The design is still useful

— communication among team members

— selected deviations can be explained more concisely and
with clearer reasoning

Architectural mismatch

e Mars orbiter loss

NASA lost a 125 million Mars orbiter because one
engineering team used metric units while another
used English units for a key spacecraft operation

Architectural mismatch

Garlan, Allen, Ockerbloom tried to build a toolset to support software
architecture definition from existing components

— OODB (OBST)

— graphical user interface toolkit (Interviews)

— RPC mechanism (MIG/Mach RPC)

— Event-based tool integration mechanism (Softbench)

It went to hell in a handbasket, not because the pieces didn’t work, but
because they didn’t fit together

— Excessive code size

— Poor performance

— Needed to modify out-of-the-box components (e.g., memory allocation)

— Error-prone construction process

Architectural Mismatch: Why Reuse Is So Hard. IEEE Software 12, 6 (Nov.
1995)

Architecture should warn about such problems (& identify problems)

Views

A view illuminates a set of top-level design decisions
* how the system is composed of interacting parts
« where are the main pathways of interaction

« Kkey properties of the parts

« information to allow high-level analysis and
appraisal

Importance of views

Multiple views are needed to understand the
different dimensions of systems

Functional
Requirements

Performance
(execution)
Requirements

(" B &)
o |-
‘.,‘ ‘.-,.

Design View Implementation
View
Classes, Interfaces, <« »@»

\Collabaations Cl;:oes ﬁ .’ B Corrponenty
(.---,! Use Case View '—.\
- s®

\\.
Process View Deployment
View
\Actjve Classes / \ NodeS/

Packaging
Requirements

Installation
Requirements

Booch

Web application (client-server)

Web Browser

Booch

Model-View-Controller

Sees

uses

updates M manipulates

Application

Separates the application
object (model) from the
way it is represented to
the user (view) from the
way in which the user
controls it (controller).

Pipe and filter

Pipe — passes the data

Q:% top | grep $USER | grep acrobat :>©

/

Filter - computes on the data

Each stage of the pipeline acts independently of

the others.
Can you think of a system based on this

architecture?

Blackboard architectures

The knowledge sources: separate,
independent units of application
dependent knowledge. No direct
interaction among knowledge sources

The blackboard data structure: problem-
solving state data. Knowledge sources
make changes to the blackboard that
lead incrementally to a solution to the
problem.

Control: driven entirely by state of
blackboard. Knowledge sources respond
opportunistically to changes in the
blackboard.

Simple Blackboard

Knowledge
Source

Blackboard

Knowledge
Source

(=== Data flow)

Knowledge
Source

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern

recognition.

45

Hearsay-Il: blackboard

Hearsay-II Instance of Blackboard

Blackboard hao Sowrces
o
Leweln \ o I Action I‘

e e
L —
Level 3
Love 2 | cotin Ja——
et | i e
Level 1 lockboard

Stiovulvr
Responge Frawe

Hlackboeed | Scheduling
Moaitor T | Quene
Schedulet

@wme Architectures A L Deta flow)
108

46

