CS 521/621
Course Overview:
Static and Dynamic Analyses

Last time

What did we talk about?

Afghanistan Stability / COIN Dynamics

Population/Popular Support
Infrastructure, Economy, & Services
Government

y Forces
Insurgents

Crime and Narcotics
Coalition Forces & Actions
Physical Environment

Gml’u%\{d\lo Wf’
» POPULATION ™
e TRAL CONDITIONS
GOV'T ~ F—~CAPACITY i ~SBELIEFS \ riipm)
LA Nes:

\ ™ OALlTIO‘L'NC:‘n . == : L Swuctures Cultural Erosio
*“sDOMESTIC il

SUPPORT ~ ‘e, "\ GOVERNANCE ‘i Z N /5‘%
‘ s — Path

N INFRASTRUCTURE,
SERVICES &
ECONOMY 7

”'

WORKING DRAFT - V3
Consulting

Group
© PA Knowledoe Limited 2000 Page 22

Why is it important to study
software engineering?

Just like cars

e US automobile industry used to be very complacent about quality
— lost a significant amount of market share
— complacency about software quality could lead to the same result

* There are many recalls for automobiles
— some fixed for free

 There are many defects in software
— some fixed for free
— some fixed in the the next release
e customer paying for the upgrade

- Why is analysis important?

Trends in Software Expansion (Bernstein, 1997)

Projection
1000
2 eas
475
Ll
E .
Xpansion 1 00
Factor
The ratio
of machine
lines of S
code to a 19
source line
of code w
& Order of Magnitude Increase Every Twenty Years [
1
1960 1965 1970 1975 1980 1985 1990 1995 2000
Machine Macro High Level Database On-line Prototyping Subsecond Object Large Scale
Instructions Assembler Language Manager Time Oriented Reuse
Sharing Programming
Regression 4GL Small
Testing Scale

Reuse

Significant increase in software control

§ s

-1960
- 8% of F-4 Fighter capability was
provided by software

2000
- 85% of F-22 Fighter capability is
provided by software

GAO, Report to the Committee on Armed Services, U.S. Senate, March 2004, pg. 4

ot & —p:'i’

Accidents f '
e USS Yorktown

http://www.slothmud.org/~hayward/mic_humor/nt_navy.html

— Suffered a systems failure when bad data was fed into its computers
during maneuvers off the coast of Cape Charles,VA

— Ship towed into the Naval base at Norfolk,VA, because a database
overflow caused its propulsion system to fail

— Took two days of pier-side maintenance to fix the problem

e Ariane Five

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

— Reused a module developed for Ariane 4, which assumed that the
horizontal velocity component would not overflow a 16-bit variable

— Not true for Ariane 5, leading to self-destruction roughly 40 seconds
after launch

Some logistics

e 521 vs. 621

— 621 is graduate students only
— 521 is undergraduate or graduate

— the material is the same, the midterm is the same,
the assignments are the same

— only three differences:
* 621 students must do a project + 1 paper presentation
* 521 students must do 2 paper presentations
e Grading (scaling) is separate

| want to sign up for 521/621

* The class is full

* |f you are not registered for the class, it is
unlikely that you can register at this point.

Today’s (and not only today’s) plan

Static analysis
Dynamic analysis
Model checking
Mutation testing
Bug localization
Symbolic execution

Areas we will cover in this course

Static analysis
Dynamic analysis
Model checking
Mutation testing
Bug localization
Symbolic execution

areas for your projects

As we go over each topic...

* Think whether this sounds interesting

* Think about what kind of a tool you could
make that uses this

* You are all programmers:
think about things you’ve done while

programming that were hard, and how these
kinds of analysis might make it easier

Static Analysis

e Two kinds we’ll consider:
— Manual
— Automatic

Manual Reviews

— Manual static analysis methods
* Reviews, walkthroughs, inspections

— Most can be applied at any step in the lifecycle

— Have been shown to improve reliability, but
 often the first thing dropped when time is tight
* labor intensive
 often done informally, no data/history, not repeatable

Reviews and walkthroughs

e Reviews

— author or one reviewer leads a presentation of
the artifact

— review is driven by presentation, issues raised

 Walkthroughs

— usually informal reviews of source code
— step-by-step, line-by-line review

Inspections

» Software inspections
— formal, multi-stage process
— significant background & preparation
— led by moderator
— many variations of this approach

Experimental results

e software inspections have repeatedly been
shown to be cost effective

* increases front-end costs

~15% increase to pre-code cost

e decreases overall cost

IBM study

* Doubled number of lines of code produced
per person

— some of this due to inspection process
* Reduced faults by 2/3

* Found 60-90% of the faults

* Found faults close to when they were
introduced

- The sooner a fault is found the less costly it is to fix

Why are inspections effective?

* Knowing the product will be scrutinized
causes developers to produce a better
product (Hawthorne effect)

* Having others scrutinize a product increases
the probability that faults will be found

 Walkthroughs and reviews are not as formal
as inspections, but appear to also be effective

— hard to get empirical results

What are the deficiencies?

 Tend to focus on error detection

— what about other "ilities” -- maintainability, portability, etc?
* Not applied consistently/rigorously

— inspection shows statistical improvement

e Human intensive and often makes ineffective use of
human resources

— skilled software engineer reviewing coding standards,
spelling, etc.

— Lucent study: »2M LoCS added to 5M LoCS required ~1500
inspections, ~5 people/inspection
— no automated support

Automatic static analysis

What can you tell me about this code:

public 1int square(int x) {

return x * XxX;

}

Automatic static analysis

What about this code:

public double weilrd sqgrt (int x) {
1if (x > 0)
return sqgrt (x);
else

return 0;

Computing Control Flow Graphs (CFGs)

ntr 4'[I
Procedure AVG ey :
S2
SI' count=0
S2 fread(fptr, n) Efs3
S3 if EOF goto SI | T
S4 if (n >=0) goto S7 54
S5 return (error) ;I'/ i_
S6 goto S9 S5 S6
S7 nums[count] =n
S8 count ++ }
S9 fread(fptr, n) S8
SI0 goto S3
SI'l avg = mean(nums,count) @
S12 return(avg) S10 1 exit

CFG with Maximal Basic Blocks

Procedure AVG

SI' count=0
S2 fread(fptr, n)
S3 while (not EOF) do

S4 if(n<0)
S5 return (error)
else
S6 nums[count] = n
S7 count ++
endif
S8 fread(fptr, n)
endwhile

S9 avg = mean(nums,count)
SI0 return(avg)

CFG with Maximal Basic Blocks

entry
Procedure AVG
Sl,2
SI count=0
S2 fread(fptr, n) Efs3
S3 while (not EOF) do T
S4 if (n <0) T 54 F
S5 return (error) L \
else S5 |
S6 nums[count] = n >6,7.8
S7 count ++
endif
S8 fread(fptr, n)
endwhile
S9 avg = mean(nums,count) T $9,10 |~

' exit

SI0 return(avg)

What about data flow?

We can do the same thing as with control flow

Uses of Data-Flow Analyses

* Compiler Optimization
 E.g., Constant propagation

a=c+10
suppose every assignment to c that reaches this statement assigns
5

then a can be replaced by 15

= need to know reaching definitions: which definitions of
variable ¢ reach a statement

Uses of Data-Flow Analyses

* Software Engineering Tasks
* E.g., Debugging

suppose that a has the incorrect value in the statement

a=cty

= need data dependence information: statements that can
affect the incorrect value at a given program point

Static analysis summary

* Manual or automatic
— very different
— manual removes bugs

* Analyze the source code to determine
— control flow

— data flow

* Build reachability graphs, data dependence
graphs, etc.

Dynamic analysis

e Assertions

* Detecting invariants

Assertions

public double area(int length, int width) {
assert (length >=0);
assert (width >=0);

return length * width;

Detecting invariants

public 1int square(int x) {

return x * x;

Let’s run the code and watch it. What can we tell about it?

Why dynamic detection?

e |sitsound?

— If you learn a property about a program, must it
be true?

* |sit complete?

— Do you learn all properties that are true about a
program?

So why dynamic detection?

Code can be complex
— Static analysis may not scale to large programs.

Sometimes, logs is all you have access to

— Not all code is open source. If you use libraries,
others’ code, you may only be able to observe
executions.

Fast

Detects properties of actual usage, rather
than all possible usage

What can we do with static and
dynamic analyses?

* You have:
— a program
— some tests that pass
— some tests that fail

What can we do with static and
dynamic analyses?
* You have:
— a program
— some tests that pass
— some tests that fail

- What can we do statically?

Statically, we can...

* Think about the code long and hard, and fix it.
e Can we step through a failing test case?
See where the code goes wrong?

— but to automate this, we have to know where the
code is “supposed” to go

 Can we reverse-engineer the conditions
necessary to get to the desired result?

What can we do with static and
dynamic analyses?
* You have:
— a program
— some tests that pass
— some tests that fail

‘What can we do dynamically?

Dynamically, we can...

e Run the code and observe
which lines execute when

— lines that execute on failings tests only are more
likely buggy
e \We can detect code invariants and reason
about the code

e We can muck with the code and see if it does
any better on the tests

