
ESP: Path-Sensitive Program Verification in Polynomial Time

Manuvir Das
Microsoft Research

manuvir@microsoft.com

Sorin Lerner
University of Washington
lerns@cs.washington.edu

Mark Seigle
University of Washington

seigle@cs.washington.edu

ABSTRACT
In this paper, we present a new algorithm for partial pro-
gram verification that runs in polynomial time and space.
We are interested in checking that a program satisfies a
given temporal safety property. Our insight is that by accu-
rately modeling only those branches in a program for which
the property-related behavior differs along the arms of the
branch, we can design an algorithm that is accurate enough
to verify the program with respect to the given property,
without paying the potentially exponential cost of full path-
sensitive analysis.
We have implemented this “property simulation” algo-

rithm as part of a partial verification tool called ESP. We
present the results of applying ESP to the problem of verify-
ing the file I/O behavior of a version of the GNU C compiler
(gcc, 140,000 LOC). We are able to prove that all of the 646
calls to fprintf in the source code of gcc are guaranteed to
print to valid, open files. Our results show that property
simulation scales to large programs and is accurate enough
to verify meaningful properties.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; D.3.4 [Programming Languages]: Compilers;
F.3.1 [Theory of Computation]: Specifying and Verify-
ing and Reasoning about Programs

General Terms
Algorithms, Security, Verification.

Keywords
Path-sensitive analysis, dataflow analysis, error detection.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

1. INTRODUCTION
In recent years, program analysis techniques have been

used to build tools for partial verification [25, 11, 3, 10].
The programmer provides a description of a temporal safety
property written as a finite state machine. An example of
such a property is given in Figure 1. An analysis tool then
tracks the state of the property FSM through a program.
If the error state is never reached, the program obeys the
safety property.
Previous work on partial verification has focused on path-

sensitive analysis methods [3, 14]. These methods are ac-
curate enough for verification because they are able to rea-
son about branch correlations, which is usually necessary to
control the number of false error reports generated during
verification. However, the cost of path-sensitivity has lim-
ited the applicability of these methods to large programs.
In this paper, we present a new path-sensitive method for
partial verification that scales to large programs.
Path-sensitive analysis can be expensive because accu-

rately tracking every branch in the control-flow of a program
in which the execution state (e.g., values of variables) differs
along the two branch paths may result in an exponential or
infinite search space. However, given a particular property
to be checked, it is likely that most branches in the code
are not relevant to the property, even though they affect the
execution state of the program. The trick is to identify and
accurately track only relevant branches.
In this paper, we present “property simulation”, a new

method for partial verification that is based on the heuristic
that a branch is likely to be relevant only if the property
FSM transitions to different states along the arms of the
branch. This heuristic leads to a path-sensitive algorithm
that is sensitive to the “property state”: symbolically eval-
uate the program, generating symbolic states that include
both the execution state and the state of the property FSM.
At a merge point in the control flow, if two symbolic states
have the same property state, produce a single symbolic
state by merging their execution states as in dataflow anal-
ysis. Otherwise, process the symbolic states independently
as in path-sensitive analysis. This method avoids exponen-
tial blowup and captures relevant branching behavior.
We make the following contributions:

• We present a framework for inter-procedural property
simulation. Particular algorithms of varying precision
and complexity can be obtained by fixing the domain
of execution states used in the framework.

• We focus on one particular instantiation of the frame-

57

☛
✡

✟
✠$uninit

❥
Open

Close

☛
✡

✟
✠Opened

☛
✡

✟
✠$error
*❥

Close

✯

Open

✮

�Print

Print

❘

Figure 1: A temporal safety property that encodes
correct usage of the stdio file output library.

work, in which the domain of execution states is cho-
sen to be the constant propagation lattice. We show
that in this case, inter-procedural property simulation
terminates in polynomial time and space.

• We describe ESP, a system that uses a combination of
scalable alias analysis and property simulation to ver-
ify that large code bases obey temporal safety proper-
ties. Property simulation can also be used to provide
an accurate starting point for a system based on iter-
ative refinement, such as SLAM [3].

• We present the results of a case study: verifying out-
put file manipulations in the gcc compiler (taken from
SPEC95) using ESP. Our results show that:

– Property simulation is accurate. We are able to
verify that all of the 646 calls to fprintf in gcc
are guaranteed to print to valid, open files.

– Property simulation is scalable. For each of the
15 files to which gcc writes its output, we are
able to perform inter-procedural simulation of the
source code of gcc (140,000 LOC) on average in
70secs and 50MB. To our knowledge, our analysis
is the first method to have verified temporal safety
properties of a program of this size.

The rest of this paper is organized as follows: In Section
2, we present a motivating example for our algorithm. In
Section 3, we present intra-procedural and inter-procedural
versions of property simulation. In Section 4, we describe
the ESP verification system. In Section 5, we present our
case study. We survey related work in Section 6, and con-
clude in Section 7.

2. EXAMPLE
In this section, we use an example to explain how certain

types of programming errors can be detected using tempo-
ral safety properties. We use the example to motivate our
property simulation algorithm.
Consider the simplified snippet of code from the gcc com-

piler shown in Figure 2. Suppose we are interested in deter-
mining whether this piece of code interacts correctly with
the stdio library through calls to fopen and fclose. For in-
stance, a file handle may be closed through a call to fclose

only if it has previously been opened through a call to fopen,
and it has not already been closed through a previous call
to fclose. There is no mechanism in a language like C to
express such usage rules in the type system, so that they
may be enforced by a compiler (cf. [10]).

void main(){

if (dump)

f = fopen(dumpFil,"w"); /* Open */

if (p)

x = 0;

else

x = 1;

l: if (dump)

fclose(f); /* Close */

}

Figure 2: A (simplified) snippet of code from a ver-
sion of the gcc compiler.

One way to overcome this problem is to instrument the
program by mapping calls to library functions to transi-
tions in the property FSM from Figure 1. Program anal-
ysis techniques can then be applied to conservatively over-
approximate the possible states into which the property
FSM may be driven along all execution paths. If the error
state is not encountered, verification of the program with
respect to the property succeeds.

Example 1. Assume that calls to fopen and fclose are
mapped to corresponding transitions Open and Close from
the property FSM. The possible symbolic states inferred by
three analyses at label l in Figure 2 are described below.
Each symbolic state includes the possible states of the prop-
erty FSM and the execution state of the program.

Path-sensitive analysis. There are four feasible paths
to l, resulting in the states:

[$uninit,¬dump,¬p, x = 1] [Opened, dump,¬p, x = 1]
[$uninit,¬dump, p, x = 0] [Opened, dump, p, x = 0]

These states capture the correlation between the property
state and dump, which is necessary to avoid following the
true branch of the condition at l in the $uninit state.

Standard dataflow analysis. States are merged at join
points in the CFG. Therefore information about dump is lost,
and the single state produced at l is [{$uninit, Opened}]. As
a result the Close transition is processed from the $uninit

state, leading to a false error report.
Property simulation. Along the true branch of the first

conditional, the property state is changed from $uninit to
Opened. Therefore, the two symbolic states from the first
conditional are not merged. The second conditional does
not affect the property state. Therefore, the four symbolic
states arising from the second conditional are merged into
two states at l: [$uninit,¬dump] and [Opened, dump]. These
states capture the correlation between the property state
and dump, but drop the correlation between p and x, which
is not relevant to checking the file output property. ✷

Property simulation is precise because it is designed to
match the behavior of a careful programmer. Before calling
a function that affects the property state, she must check
the current state of the property FSM to ensure that the
function call will not result in an error. However, the pro-
gramming language provides no mechanism to express or
check the property state. Instead, she uses conditionals to
check the program state before the function call. In other
words, the programmer maintains an implicit correlation be-
tween a given property state and the execution states under

58

global
1 Worklist : 2N

2 Info : E → 2S

procedure Solve(CFG = [N, E])
begin

3 for each e ∈ E do Info(e) := {}
4 Info(OutT (nentry)) := {[$uninit,�]}
5 Worklist := {dst(outT (nentry))}

6 while Worklist �= ∅ do
7 Remove a node n from Worklist
8 switch(n)
9 case n ∈ Merge:
10 ss = Fmrg (n, Info(In0 (n)), Info(In1 (n)))
11 Add(OutT (n), ss)
12 case n ∈ Branch:
13 ssT = Fbr (n, Info(In0 (n)), true)
14 ssF = Fbr (n, Info(In0 (n)), false)
15 Add(OutT (n), ssT)
16 Add(OutF (n), ssF)
17 case n ∈ Other :
18 ss = Foth (n, Info(In0 (n)))
19 Add(OutT (n), ss)

20 return Info
end

procedure Add(e, ss)
begin

21 if Info(e) �= ss then
22 Info(e) := ss
23 Worklist := Worklist ∪ {dst(e)}

end

Figure 3: Intra-procedural property analysis.

which the property FSM is in that state. Property simula-
tion makes this correlation explicit in the analysis.
In the example above, we assumed that there is a single

file handle in the program, and that changes to its state
can be identified syntactically. In practice, neither assump-
tion is valid. In Section 4, we describe ESP, a system that
uses a combination of scalable alias analysis and property
simulation to track multiple stateful values.

3. PROPERTY SIMULATION
In this section, we describe property simulation in detail.

We first present property analysis, a general framework for
tracking property states and execution states using path-
sensitive dataflow analysis. By varying a function α that
groups together execution states, we obtain three dataflow
analyses: a fully path-sensitive analysis, a standard dataflow
analysis, and property simulation. Each analysis can be
further instantiated to algorithms of particular precision and
complexity by choosing a particular domain for execution
states. We describe an instantiation of property simulation
based on constant propagation. We show that for this case,
property simulation runs in polynomial time and space.

3.1 Intra-procedural property analysis
In this subsection we describe a generic dataflow analy-

sis, “property analysis”, that computes the set of possible
property states at all points in a single procedure program.
We assume a standard CFG with a distinguished entry

node nentry , merge nodes with exactly two predecessors,

Fmrg (n, ss1 , ss2) = α(ss1 ∪ ss2)

Fbr (n, ss, val) = α({s′|s′ = fbr (n, s, val) ∧ s ∈ ss ∧ es(s′) �= ⊥})

Foth (n, ss) = α({foth (n, s)|s ∈ ss})

(a) Flow functions

αcs (ss) = ss

αdf (ss) = {[Ss∈ss as(s),
F

s∈ss es(s)]}

αas (ss) = {[{d},Fs∈ss[d] es(s)]|d ∈ D ∧ ss[d] �= ∅}

where ss[d] = {s|s ∈ ss ∧ d ∈ as(s)}

(b) Grouping function

Figure 4: Definitions of flow functions and the
grouping function.

branch nodes with a single predecessor, a true successor,
and a false successor, and computation nodes with a single
predecessor and a single successor. We use appropriately
named accessor functions to extract edge information from
CFG nodes and vice versa (In, Out, src, dst).
We use the following domains: D is the (finite) set of

states in the (deterministic) property state machine. D in-
cludes two distinguished states: $uninit, the initial state,
and $error, the error state. S is the domain of symbolic
states. A symbolic state is a pair containing an abstract
state, which is a set of property states, and an execution
state.1 Given a symbolic state s ∈ S, we denote its abstract
state by as(s), and its execution state by es(s). The prop-
erty analysis computes, for each edge in the CFG, a dataflow
fact from the domain 2S .
The pseudo code for intra-procedural property analysis is

given in Figure 3. This is a standard worklist algorithm
that updates a map from edges to dataflow facts, until no
further updates are possible. Figure 4(a) shows the flow
functions for the three types of nodes in the CFG. The flow
functions first compute a set of symbolic states, and then
use a grouping function α : 2S → 2S , described in detail
later, to filter this set.

Fmrg combines the dataflow facts on its input edges into
a single fact, using set union.

Fbr takes a set of symbolic states on its input edge. It
maps each input state to an output state using fbr , the trans-
fer function for branch nodes. fbr has two effects: First, it
uses a theorem prover to determine whether a given branch
direction is feasible using the information in the execution
state. Second, if a branch direction is neither implied by nor
ruled out by the execution state, it updates the execution
state, setting the branch predicate to either true or false.

Foth maps input states to output states using foth , the
transfer function for computation nodes. foth may update
the abstract state if the node corresponds to a transition in
the property FSM. It may also update the execution state.

3.1.1 Grouping symbolic states
Property analysis uses a function α to group together cer-

tain sets of execution states. By defining α as in Figure 4(b),
we obtain three versions of property analysis corresponding

1⊥ represents no behaviors; � represents all behaviors.

59

to fully path-sensitive analysis, standard dataflow analysis,
and property simulation:

Fully path-sensitive analysis. αcs is the identity func-
tion. Therefore, merge nodes merely accumulate informa-
tion from all of their predecessor edges.

Standard dataflow analysis. αdf merges all the sym-
bolic states in a set into a single symbolic state. There-
fore, this analysis is similar to standard dataflow analysis,
in which sets of tuples are joined into a single tuple at merge
points. Because of this merging, the correlation between a
given property state and the execution states under which
the property state arises is lost. Note that this analysis is
predicate aware, in the sense that the correlation between
two branches can be tracked provided there are no interven-
ing merges between them. An efficient version of the analysis
can be obtained by fixing the execution states as �. This
would result in a path-insensitive analysis that only propa-
gates sets of property states.

Property simulation. αas takes a set of symbolic states
and “groups” the elements of the set based on the property
state. All of the execution states in one group are merged.
For example, αas({[{a}, l], [{a}, m], [{b}, n], [{b}, o], }) =
{[{a}, l 	 m], [{b}, n 	 o]}. In other words, αas is designed
to maintain the correlation between a given property state
and the execution states under which the property FSM is
driven into that state at a given program point.

3.1.2 Termination and complexity
We now argue the termination and complexity of intra-

procedural property simulation. Let T be the cost of one
call to the flow function for execution states (fbr or foth),
let J and Q be the cost of the join operation and the equality
operation on execution states, respectively.
By the definition of αas , the number of symbolic states in

each dataflow fact is bounded by |D|, the number of states
in the property FSM. During the analysis, each element of
a set can become less precise repeatedly. If we assume that
each element can become less precise at most H times, then
the algorithm terminates. This can be guaranteed either
by requiring a finite height lattice of execution states (of
height H), or by using widening operators [6]. Since the set
on a given edge can have at most |D| elements, and each
element can become less precise at most H times, each edge
is relaxed at most H |D| times, causing O(H |E||D|) nodes to
be processed, where |E| is the number of edges in the CFG.
In our implementation, when a node is added to the work-

list, we keep track of the property state for which the exe-
cution state has changed. This allows us to (1) evaluate fbr
or foth only on the execution state that has changed and (2)
evaluate 	 (in αas) and the equality test (on line 21 from
Figure 3) only on the newly produced execution state. As a
result, each time a node is processed, there is at most one
equality operation, one join operation, and one call to the
flow function (fbr or foth). Therefore, the complexity of intra-
procedural property simulation is O(H |E||D|(T + J + Q)).

3.1.3 A framework for property simulation
In the definition of property simulation given above, the

choice of the domain for execution states and the join op-
eration on execution states have been left open. Therefore,
the definition provides a framework for property simulation.
Particular algorithms of varying precision and complexity
can be obtained by fixing the domain and the join opera-

tion used for execution states. For instance, if the domain
of execution states is chosen to be sets of symbolic stores
(i.e., stores arising from symbolic evaluation), and the join
operation is chosen to be set union, property simulation is
identical to fully path-sensitive analysis.
Therefore, property simulation should be viewed as a tech-

nique for grouping together the execution states that imply
a particular property state. This grouping allows us to con-
trol the complexity of the analysis by selecting the join op-
eration, while avoiding any loss of precision from merging
execution states associated with different property states.

3.1.4 Instantiation to constant propagation
The particular instantiation of property simulation we use

in our work is based on constant propagation. Execution
states are chosen to be stores that map program variables
to values from a standard constant propagation lattice. The
join operation chosen is also the standard join used in con-
stant propagation. If a variable has different values in two
stores that are joined, its value is set to �. The theorem
prover uses the execution state to replace variables in a
predicate expression with their values, and then simplifies
the expression. If the resulting expression is either T or F,
the appropriate branch is eliminated. Otherwise, if the sim-
plified expression is of the form x == c for some constant
c, fbr updates the execution state accordingly along each
branch. foth updates the execution state at assignments to
variables by simplifying the right hand side expression and
updating the store.
For this instantiation: (1) H = 3V where V is the number

of variables; (2) the cost of a single call to the theorem prover
is V , and therefore T = V since fbr calls the theorem prover;
(3) join and equality each take V time so that J = Q = V .
Therefore, the complexity of the algorithm is O(V 2|E||D|).

For the rest of this paper, we limit our discussion to the
constant propagation instantiation of the property simula-
tion framework.

3.1.5 Example

Example 2. Figure 5 shows the dataflow facts produced
by fully path-sensitive analysis (PSA), standard dataflow anal-
ysis (Dataflow), and property simulation (PropSim) for the
program in Figure 2, given the temporal safety property in
Figure 1. We abbreviate dump with d, [p → F, d → T] with
!pd, $uninit with $u, Opened with o, etc.
We now describe in detail the steps taken by property

simulation, pointing out the points at which property simu-
lation differs from the other two analyses.

Step 1. The theorem prover does not have enough infor-
mation in the execution state to determine the direction of
branch n1, so the symbolic state is split, propagating [$u, d]
and [$u, !d] to the true and false successor edges of n1.

Step 2. n2 transitions the property state from $u to o,
thus propagating [o, d] to its successor.

Step 3. n3 merges the incoming facts, keeping the execu-
tion states d and !d separate because the associated prop-
erty states are different. Thus, the outgoing information
is {[$u, !d], [o, d]}. Notice that Dataflow loses precision here
compared to PropSim, since it merges all the execution states
into one, producing {[{$u, o},�]}.

Step 4. Given either state d or state !d, the theorem
prover cannot determine the direction of branch n4, so each

60

[$u, T]

[$u,!p!d][$u,!p d]
[$u, p!d][$u, p d]

entry

exit

[$u, d]
[$u,!d]

[$u,!d]
[o, d]

[$u,p!d]
[o,p d]

[$u,!p!d]
[o,!p d]

[$u,!p!d] [o,!p d]
[$u, p!d] [o, p d]

[$u,p!d]
[o,p d]

[$u,!p!d]
[o,!p d]

[o,!pd]
[o, pd]

[$u,!pd]
[$u, pd]

[$u,!p!d]
[$u, p!d]

[$u, T]

[$u, d]

[o, d]

[$u,!d]
[o, d]

[$u,p!d]
[o,p d]

[$u,!d]
[o, d]

[$u,p!d]
[o,p d]

[o, d]

[$u, d]

[$u, T]

[{$u,o},p]

[$u, T]

[$u, d]

[o, d]

[{$u,o},T]

[{$u,o},p]

[{$u,o},T]

[{$u,o},d]

[{$u,$e},d]

[{$u,o,$e},T]

[$u,!d]

[$u,!p!d]
[o,!p d]

[$u,!p!d]
[o,!p d]

[$u,!d]

[$u,!d]

[{$u,o},!p]

[{$u,o},!d]

[{$u,o},!p]

PSA PropSim DataflowPSAPropSimDataflow

 if (d)n1

 Openn2

 if (p)n4

 Mergen3

 Mergen7

 x:=0n6 x:=1n5

 if (d)n8

 Mergen10

 Closen9

[o, d]

TF

TF

TF

Figure 5: A comparison of fully path-sensitive analysis, standard dataflow analysis, and property simulation.

symbolic state is split, propagating {[$u, p!d], [o, pd]} and
{[$u, !p!d], [o, !pd]} to the true and false successors of n4.

Step 5-6. Nodes n5 and n6 add the value of x to the ex-
ecution state. We drop this information from the execution
states in order to simplify the diagram.

Step 7. n7 merges the incoming facts {[$u, p!d], [o, pd]}
and {[$u, !p!d], [o, !pd]} based on the property state. The re-
sult is {[$u, !d], [o, d]}, which says that either the property
state is $uninit and dump is false, or the property state
is Opened and dump is true. This step shows how PropSim

differs from PSA. In PSA, p is tracked accurately, thus dou-
bling the number of execution states that must be analyzed
downstream of n7. However, PropSim drops the value of p
from the execution state because it is not correlated with
the property state.

Step 8. When the theorem prover is invoked at n8 with
either state d or state !d, it is able to determine that only
one leg of the branch is feasible: true for state d and false for
state !d. As a result, {[o, d]} and {[$u, !d]} are propagated
respectively to the true and false successors of n8.

Step 9. n9 transitions the property from o to $u, thus
propagating [$u, d]. Notice how, because of the merge at
node n3, Dataflow produces a transition to $e at n9. ✷

3.2 Inter-procedural property simulation
The pseudo code for inter-procedural property simulation

is given in Figure 6. Property simulation is extended to the
inter-procedural case in a context-sensitive manner through
the use of partial transfer functions, or summary edges, as
in [27, 23]. The main idea is as follows: Suppose we are

processing function foo and we encounter a call to func-
tion bar. We would like to apply a transfer function on the
edge from the call site in foo to the associated return node
in foo. However, since the body of bar contains multiple
nodes, the transfer function must be generated dynamically
by analyzing bar. This is done by maintaining and updat-
ing a summary for bar that maps dataflow facts at entry to
bar to dataflow facts at exit from bar. When a call site is
encountered in foo with dataflow fact s, the current sum-
mary for bar is consulted. If the summary contains an entry
s → s′, s′ is added at the return node in foo. Otherwise,
dataflow is triggered at the entry node of bar. The map Info
is modified to associate each dataflow fact generated in the
body of bar with the dataflow fact at entry to bar for which
dataflow was triggered. This modification enables genera-
tion of the context-sensitive summaries described above.
Context-sensitive property simulation may not terminate

if the domain of execution states is infinite, as in constant
propagation. Therefore, we restrict context-sensitivity to
property states. We treat execution states in a context-
insensitive manner, by merging execution states from differ-
ent call sites at function entry nodes using αas (line 36).
The algorithm in Figure 6 can be implemented efficiently

using the framework of Reps, Horwitz and Sagiv (RHS, [23]).
The complexity of this implementation of property simula-
tion is O(V 2|D|(|E||D| + Calls|D|2)), where Calls is the
number of call sites in the program. A detailed discussion
of inter-procedural property simulation, its RHS implemen-
tation and its complexity is given in [8].

61

global
1 Worklist : 2N×D

2 Info : (E × D) → 2S

3 Summary : (F × D) → 2S

procedure Solve(Global CFG = [N, E, F])
begin

4 for each [f, d] ∈ F × E do Summary(f , d) := ∅
5 for each [e, d] ∈ E × D do Info(e, d) := ∅
6 e := OutT (entryNode(main))
7 Info(e, $uninit) := {[$uninit,�]}
8 Worklist := {[e, $uninit]}

9 while Worklist �= ∅ do
10 Remove a pair [n, d] from Worklist
11 switch(n)
12 case n ∈ Call :
13 ssin := Info(In0 (n), d)
14 ssout := ∅
15 for each d ′ ∈ D s.t. ssin [d ′] �= ∅ do
16 if Summary(callee(n), d ′) �= ∅ then
17 ssout := ssout ∪ Summary(callee(n), d ′)
18 AddTrigger(entryNode(callee(n)), d ′, ssin [d ′])
19 Add(OutT (n), d , αas (ssout))
20 case n ∈ Exit :
21 ssin := Info(In0 (n), d)
22 AddToSummary(n, d , ssin)
23 case n ∈ Merge:
24 ssout := Fmrg(n, Info(In0 (n), d), Info(In1 (n), d))
25 Add(OutT (n), d, ssout)
26 case n ∈ Branch:
27 ssT := Fbr (n, Info(In0 (n), d), true)
28 ssF := Fbr (n, Info(In0 (n), d), false)
29 Add(OutT (n), d, ssT)
30 Add(OutF (n), d, ssF)
31 case n ∈ Other :
32 ssout := Foth(n, Info(In0 (n), d))
33 Add(OutT (n), d, ssout)

34 return Info
end

procedure AddTrigger(n, d, ss)
begin

35 e := OutT (n)
36 ss′ := αas(ss ∪ Info(e, d))
37 Add(e, d , ss′)

end

procedure Add(e, d, ss)
begin

38 if Info(e, d) �= ss then
39 Info(e, d) := ss
40 Worklist := Worklist ∪ {[dst(e), d]}

end

procedure AddToSummary(n, d, ss)
begin

41 if Summary(fn(n), d) �= ss then
42 Summary(fn(n), d) := ss
43 for each m ∈ returnSites(n) do
44 for each d′ ∈ D s.t. Summary(fn(m), d ′) �= ∅ do
45 Worklist := Worklist ∪ {[callSite(m), d′]}

end

fn: maps a node to the name of its enclosing function
entryNode: maps a function name to its entry node
callee: maps a call node to the name of the called function
callSite: maps a return-site node to its call-site node
returnSites: maps an exit node to its return-site nodes

Figure 6: Inter-procedural property simulation.

3.3 Why is property simulation precise?
Property simulation selectively merges away information

from execution states. Therefore, it is possible to construct
programs for which property simulation is less precise than
full simulation. One such example program is given in Fig-
ure 7(a). In this program, because neither branch of the
first conditional changes the property state, the correlation
between dump and flag is lost. As a result, the analysis
is unable to detect that two of the four paths through the
remaining conditionals are infeasible. This leads to a false
error report along the path in which a call to fclose is not
preceded by a call to fopen.
It may appear that the program in Figure 7(a) represents

a common situation in programs, namely that conditions
guarding transitions are copied around. In fact, this exam-
ple represents a much narrower class of programs, in which
flags are copied around before they are ever used to guard
transitions, and different copies of the flag are used to guard
different transitions. The example programs in Figures 7(b)
and 7(c) represent variations of the example in Figure 7(a)
that occur much more frequently in practice.
The program in Figure 7(b) represents a situation in which

the guarding flag is passed to another function, so that the
guard on subsequent transitions is a different variable. Prop-
erty simulation is accurate in this case. For each property
state at the end of the first conditional, the value of dump
is known. As a result, only one path is taken through the
second conditional, and so the value of flag is known. In
other words, the correlation between the property state and
flag is preserved.
The program in Figure 7(c) represents a situation in which

the guard expression is a complex, expensive operation that
the programmer does not wish to repeat or cannot replicate
later in the program. Therefore, a flag is set to indicate
whether the file was opened; this flag is used later to decide if
the file should be closed. Property simulation is accurate in
this case as well, because the correlation between flag and
the property state is preserved. This example also represents
a situation in which a helper function is called to perform
some transition. The helper function returns a status code
indicating whether it was able to perform the transition.
The flag dump may represent some complex condition on
the state of the operating system, for instance. Because
subsequent transitions are only guarded by flag, there is
no loss of precision if the analysis is unable to maintain the
value of dump in the execution states.
Property simulation is precise because it is designed to

match the behavior of a careful programmer. In order to
avoid programming errors, she must maintain an implicit
correlation between a given property state and the execu-
tion states under which the property FSM is in that state.
Property simulation makes this correlation explicit.

4. ESP
In the previous section, we assumed that programs update

the state of a single global state machine. In practice, there
are usually multiple values of a given type (for instance,
file handles) created during execution of the program; each
such value has an associated property FSM, the state of
which changes as the program executes. In this section, we
describe ESP (Error Detection via Scalable Program Analy-
sis), a system that uses a combination of scalable alias anal-

62

if (dump)

flag = 1;

else

flag = 0;

if (dump)

f = fopen(...);

if (flag)

fclose(f);

(a)

if (dump)

f = fopen(...);

if (dump)

flag = 1;

else

flag = 0;

if (flag)

fclose(f);

(b)

if (dump) {

f = fopen(...);

flag = 1;

}

else

flag = 0;

if (flag)

fclose(f);

(c)

Figure 7: Examples highlighting the precision of property simulation.

ysis and property simulation to track the states of multiple
stateful values in large C programs.
ESP is a partial verification method that borrows a key

insight from the Metal checking system [11]. The insight
behind Metal is that the abstraction gap between a tem-
poral safety property and C source code could be bridged
by a programmer-supplied specification. The specification
includes an FSM that encodes the property to be checked,
a set of source code patterns that indicate how fragments
of source code map to transitions in the property FSM, and
a set of patterns that indicate how fresh stateful values are
created by the program.
Figures 1 and 8 show the specification we use for verify-

ing calls to fprintf in gcc. According to this specification,
stateful values are created by calls to fopen. Each stateful
value goes through state transitions during program execu-
tion. A function call that matches a pattern causes a transi-
tion on the property FSM of the value held by the expression
in position e at the call site. If the property FSM of any
stateful value reaches the error state, the program violates
the safety property.
ESP is a conservative system; when it does not report

any errors, the programmer is guaranteed that the specified
property is not violated by the program. This characteristic
imposes a heavy burden on ESP; the analysis must at once
be conservative, precise and scalable.

4.1 Insights behind scalable verification
The complication introduced by multiple stateful values is

that these values may flow through assignments to function
calls in the source code at which the expression in position
e appears syntactically different from the value. Therefore,
a conservative system such as ESP must perform a global
value flow analysis as part of the property analysis, in order
to determine which stateful values are affected by a given
function call in the code. However, value flow analysis based
on global dataflow analysis has so far proven intractable on
large programs.
The first insight behind ESP is that property analysis for

multiple values can be broken up into two sub-problems,
each of which can be solved by an analysis at a different
precision level. We can use a highly scalable flow-insensitive
but context-sensitive approximation of value flow to discover
which stateful values are affected at every function call in the
program that matches a pattern. We can then run property
simulation on all of the stateful values, using the results of
the previous analysis instead of tracking value flow directly
during property simulation.

C code pattern Transition Creation?
e = fopen() Open Yes
fclose(e) Close No
fprintf(e,) Print No

Figure 8: Source code patterns in ESP.

The second insight behind ESP is that by restricting the
specification language to preclude properties that correlate
the states of multiple values, we can analyze one stateful
value at a time, through the whole program, much like a
bit-vector dataflow analysis. This approach amplifies the
scaling effect of the heuristic used in property simulation,
because when ESP is tracking one stateful value, branches
that affect the states of values other than the tracked value
are merged away.

4.2 ESP analysis
In this subsection, we describe the analysis components

of ESP. Our goal here is to provide enough of an overview
so that it is clear how ESP utilizes property simulation. We
use the simplified version of the core gcc compiler code in
Figure 9 as a running example.
ESP consists of the following analysis steps.

a. CFG construction. We run a scalable points-to anal-
ysis [7] to produce a conservative approximation of the call
graph of the program. We replace every indirect call with di-
rect calls to all possible target functions at the call site. The
graph is potentially quadratic in the number of call edges,
but is linear in practice because of a simple caching tech-
nique explained in [7]. While constructing the call graph,
we also produce CFGs for all functions.

b. Value flow computation. We run a scalable context-
sensitive flow-insensitive points-to analysis [9] to produce
a conservative approximation of the flow of values in the
program. The analysis maps every expression to a node in
a “value flow graph” (VFG), and answers value flow queries
conservatively: if there is some run of the program in which
the value of expression e flows to e′, then there is a path of
zero or more flow edges in the VFG from e to e′. Because the
VFG is context-sensitive, it is able to distinguish between
value flow at different call sites to the same function.

c. Abstract CFG construction. Once the VFG is pro-
duced, we use the property specification to replace calls to

63

FILE *f1, *f2; 2: restOfComp() {

int p1, p2; if (p1)

1: compFile() { i: printRtl(f1);

if (p1) if (p2)

f1 = fopen(...); j: printRtl(f2);

if (p2) restOfComp();

f2 = fopen(...); }

restOfComp(); 3: printRtl(FILE *f) {

} fprintf(f,...);

}

1

❄
2�

❄
3

f1

f

f2

❅
❅❘

	
	✒

i2

j2

printRtl ->

inNodes: f

restOfComp ->

inNodes: f1, f2

compFile ->

outNodes: f1, f2

(a) (b) (c) (d)

Figure 9: Application of ESP on gcc.

pattern functions in the CFGs with special pattern nodes.
Each pattern node is parameterized by the VFG node for
the expression in position e at the call; this node represents
the possible stateful values that may have state transitions
at that program point.

Example 3. Figures 9(b) and 9(c) show the call graph
and the VFG for the program in Figure 9(a). The label
i2 on the flow edge in the VFG indicates that the value of
f1 flows to f due to parameter passing at call site i. The
subscript on i indicates that the call site is located in the
body of function 2 (restOfComp). This information adds a
measure of flow-sensitivity to the VFG. ✷

d. Interface expression computation (bottom-up slic-
ing). In order to track value flow more accurately, we split
up inter-procedural value flow into smaller, more accurate
flows by introducing the concept of interface expressions.
The input interface expressions (inNodes) of a function bar

include all globals, formal parameters of bar, and derefer-
ences of these. At entry to bar, these expressions may hold
stateful values that may have their state changed during ex-
ecution of bar. The output interface expressions (outNodes)
of a function bar include all globals, the return value of bar,
and dereferences of these and the formal parameters of bar.
At exit from bar, these expressions may hold stateful val-
ues that were created by bar. In large programs, these sets
can be very large, due to global variables. Further, in an
unsafe language such as C, the sets cannot be pruned based
on declared types.
Instead, we use a bottom-up slicing procedure on the call

graph of the program to prune interface expression sets: An
expression e can be omitted from inNodes(bar) if there is
no pattern on expression e′ within bar (or functions called
by bar) such that the value of e flows to e′ between the
start of bar and the execution of the pattern. Similarly, an
expression e can be omitted from outNodes(bar) if there is
no value creation pattern on expression e′ within bar (or
functions called by bar) such that the value of e′ flows to e

between the execution of the creation pattern and exit from
bar. This slicing step allows us to dramatically reduce the
number of interface expressions.

Mod set computation. We also use the bottom-up slic-
ing procedure to compute mod sets for all functions. The
mod sets are represented implicitly, using VFG nodes in-
stead of sets of variables. Mod sets are used by property
simulation: if a statement is encountered that is too com-
plicated for the simulation engine to process, the analysis

can proceed conservatively by invalidating the values in the
execution state for those variables that are in the mod set
of the statement.

Alias set computation. ESP handles multiple stateful
values by creating sets of interface expressions called “alias
sets”. An alias set is a set of syntactic expressions that may
hold the same stateful value. The alias sets to be tracked in
any function foo are created from subsets of the inNodes of
foo, or from subsets of the outNodes of functions called by
foo. Alias sets for input values are created during property
simulation. Alias sets for output values are created using
the bottom-up slicing procedure. One way to view this step
is as an escape analysis.
The result of this procedure is that for each created value

in the program, there is an alias set s associated with the
highest (in the call graph) function foo to which the value
escapes. We trigger property analysis for each such s by as-
sociating a symbolic state [$uninit,�] with s at the entry
node of foo. By triggering dataflow in this way, we can dis-
cover errors that arise because a value was used before being
created (for instance, a call to fclose was not preceded by
a call to fopen).

Example 4. Figure 9(d) shows the interface expressions
produced by ESP for the program in Figure 9(a). The po-
tential inNodes of printRtl are f1, f2, p1, p2, and f. A
VFG query reveals that the only one of these whose value is
transferred to f between the entry point of printRtl and the
call to printf is f. The inNodes of restOfComp are f1 and
f2, as they both flow to inNode f of callee printRtl. There
are two created values in compFile. They escape through
outNodes f1 and f2. The top level function to which the
values escape is compFile. The associated alias sets are {f1}
and {f2}. ✷

e. Property simulation.

• Intra-procedural case. Suppose we are tracking the
state of an alias set s. When we encounter a pattern
on e′, we query the VFG. If some e ∈ s can flow to
e′, we update the state of s based on the pattern.
Furthermore, if some other e′′ can flow to e′, we add
an identity transition for s, because the transition may
not have occurred on the value being tracked. This
requirement is introduced because our VFG represents
only “may” information.

• Inter-procedural case. Suppose we are tracking alias
set s in foo, and we encounter a call to bar. We query

64

the VFG to determine which inNodes of bar s may
flow to at this call site. These nodes form an alias set
s′. We trigger dataflow in bar from s′ in an initial
state given by the state of s at the call site.

Suppose we are tracking alias set s in bar, and we
encounter the exit node of bar. At this point, we have
discovered a new component of the summary of bar,
namely a state transition d1 → d2 for alias set s. When
such a transition is discovered, we reflect it back to
every call site c to bar by adding transitions d1 → d2

at c for all alias sets in the caller that may flow to
s at c. As in the intra-procedural case, if multiple
expressions from the caller may flow to s at c, we add
the identity transition at c.

Example 5. For the program in Figure 9(a), property
simulation tracks the states of alias sets {f1} and {f2} from
the entry node of compFile. Consider tracking {f1}. The
first branch in compFile causes a split in the state of {f1}, so
no merge is performed at the join point. The second branch
does not affect the state of {f1}, so states are merged. As
a result, information about p2 is lost. Simulation is trig-
gered in restOfComp in two ways: {f1} in state Opened with
p1=T, and {f1} in state $uninit with p1=F. The first case
verifies trivially because fprintf leaves the state Opened un-
changed. In state $uninit, p1=F and therefore call site i is
not reached. p2 is not tracked in the execution states; hence,
call site j is considered. The VFG is queried to determine
the alias set in printRtl. {f1} does not flow to any inN-
ode of printRtl at call site j, resulting in an empty alias
set. Therefore, simulation is not triggered in printRtl. A
similar argument holds for {f2}. ✷

5. CASE STUDY: FILE OUTPUT IN GCC
The goal of ESP is to verify safety properties of commer-

cial programs, which are typically both large and written
in C++. As a first step, we have built a system for ana-
lyzing large C programs. In order to understand both the
efficiency and the accuracy of property simulation, we have
applied ESP to the problem of verifying calls to fprintf in
the gcc compiler. In this section, we discuss our results.

5.1 gcc
We analyze the source code of a version of the gcc compiler

taken from the SPEC95 benchmark suite. The structure of
this version of gcc is as follows: The main function contains
a loop that invokes compile file to compile individual com-
pilation units. compile file conditionally opens 15 output
files based on user flags, runs compilation, and then condi-
tionally closes the output files. At various points during the
compilation process, fprintf is called to write out parts of
the RTL and/or debugging messages to various output files,
if the corresponding user flags are set and/or the files are
non-NULL. Figure 9(a) shows a snippet of the core gcc code
that summarizes its file output behavior.
gcc is a complex program: It has 140,000 LOC in 2149

functions spread over 66 files; there are 1,086 global and
static variables; the call graph contains a strongly connected
component (SCC) with over 450 functions. This SCC comes
about because of the recursive descent nature of gcc. The

complexity of the call graph is not the result of our conserva-
tive points-to analysis. Even if we ignore function pointers,
this SCC has 350 functions. Worse yet, most of the calls to
fprintf are buried in functions that either are in this SCC
or are called from functions in this SCC.

5.2 Verification
File output in gcc is a difficult property for path-sensitive

methods, because the code starts by conditionally creating
15 file handles based on un-correlated user flags, and all of
these file handles can reach the calls to fprintf buried in
the code. Therefore, path-sensitive methods may track all
215 combinations of file states through the code representing
the core engine of gcc; this would likely be infeasible. Our
property simulation method, on the other hand, is ideally
suited for the problem. The file handles are processed one at
a time. When file i is processed, all of the conditionals con-
taining calls to fopen except the ith conditional are merged,
because they do not affect the state of file i. Therefore, the
core code of gcc is simulated in two configurations, one in
which file i is open and user flag i is true, and another in
which file i is not open but user flag i, which guards the calls
to fprintf reachable by file i, is false.
We used ESP to check gcc against the specification in

Figures 1 and 8. We were able to verify that there is no
execution of the program in which fprintf is called on a
file handle in states $uninit or Closed.
In addition, a VFG query confirms that the only values

on which fprintf is called are the file handles created in
compile file, stdout, and NULL. The simulation guaran-
tees that fprintf is never called on NULL, for the following
reason. The VFG shows that the only way NULL may flow to
fprintf is through the global file variables tracked by ESP.
Suppose that NULL does flow to a call to fprintf through
one of the global file variables f. Then when f is processed,
this call to fprintf will be reached with f in state $uninit,
resulting in a transition to the error state.
Put together, the conditions above guarantee that all of

the 646 calls to fprintf in gcc print to valid, open files. This
is a useful, non-trivial property that cannot be expressed
using types. To our knowledge, ESP is the first program
verification method to have successfully verified temporal
safety properties of a program the size of gcc.

5.2.1 Methodology
We perform context-sensitive inter-procedural property

simulation of the downwards closure (∼140,000 LOC) of
compile file in the call graph of gcc. In order to success-
fully verify gcc, we made a few changes to the gcc source
code. These changes are listed below:

• The obstack free function contains an indirect call to
a free method that pollutes our call graph. We hand
modeled this function.

• As noted in Section 3.2, our inter-procedural prop-
erty simulation algorithm is context-insensitive with
respect to the execution state. There are two pairs of
file handles (sched dump file/sched2 dump file, and
cse dump file/cse2 dump file) for which this merg-
ing blocks verification. For this study, we avoided
the problem by creating two copies each of functions
cse main, schedule insns, and schedule block.

65

RunTime (secs) MemUsage (MB)

Average 72.9 49.7
Maximum 170 102

Table 1: Performance of property simulation.

We are exploring ways of introducing context-sensitivity
with respect to execution states in a controlled manner.

5.2.2 Why is ESP precise?
It is easy to see that property simulation should be accu-

rate enough to track the correlated file output behavior in
gcc. Because of the merge heuristic, all of the many thou-
sand conditionals in the code that are expensive or difficult
to track are merged away with no loss of precision.
The other aspect of ESP is the value flow analysis. Our

VFG is precise with respect to top level pointers, but con-
servative with respect to pointers stored in data structures.
Because gcc does not store file handles in heap-allocated
data structures, we are able to generate alias sets and track
value flow accurately. We accept this as a fair advantage,
because our goal in this study is to determine the usefulness
of property simulation rather than the power of ESP.
In our preliminary experiments applying ESP to parts of a

large commercial operating system, we have yet to find any
instances in which property simulation (in particular, the
constant propagation instantiation of property simulation)
is inaccurate. We have not yet applied ESP in any context
in which the value flow is too complicated for our value flow
analysis. It is likely that as we apply ESP to check other
properties, the primary precision bottleneck will be the value
flow analysis. In order to address this problem, we have
designed a scalable path-sensitive value flow analysis that
tracks alias sets efficiently, using the merge heuristic built
into property simulation.

5.3 Scalability
We have implemented inter-procedural property simula-

tion as an extension of a global RHS-style dataflow engine
[23, 8]. Some performance statistics are summarized in Ta-
ble 1. The table reports average and maximum values, over
the 15 file handles, of running time in seconds (wall clock),
and memory usage in MB per file handle. These numbers
do not include the cost of building and loading CFGs. This
data was generated on a Toshiba Tecra 8200 laptop with
a 1GHz Pentium III processor and 512MB RAM, running
Windows XP.
The algorithm is surprisingly efficient, especially consid-

ering that we have not put significant effort into optimizing
our implementation. We believe that the cost of simulation
can be amortized significantly by caching states and reusing
them across simulations, and by using standard ordering and
representation techniques from dataflow analysis.
While we have considered only one program in our case

study, we believe that the size and complexity of this pro-
gram provides a compelling argument that property sim-
ulation is a scalable method for verifying temporal safety
properties of large programs.

6. RELATED WORK
In this section, we survey related work on partial program

verification and path-sensitive dataflow analysis.

6.1 Partial program verification
Program verification [17, 22] has been viewed as the holy

grail of software reliability for decades. Over the years, it
has been accepted that full scale verification of large code
bases is infeasible. However, there has been a resurgence
of research in recent years on partial verification: check-
ing a program against a specification of a particular tem-
poral safety property. We list some examples of projects
along these lines below. Our work follows the lead of these
projects.

Typestate analysis. Most recent work on partial verifi-
cation can be viewed as tracking typestate, first introduced
by Strom and Yemini in [25]. Typestate extends the ordi-
nary types in the program, which remain invariant through
the lifetime of an object, with a set of states between which
values of a given type can transition. ESP can be viewed as
a typestate checker for large programs.

Partial verification tools. All of these tools can stati-
cally guarantee the absence of errors.
ESC-Java [14] applies theorem proving methods to verify

functions in Java programs against specifications of their
pre-conditions and post-conditions. ESC-Java is a local
analysis that requires programmer annotations; recent work
has focused on automatically generating annotations [15].
Our method is less precise that ESC, but is global and free
of annotations. The summaries produced by ESP can be
viewed as automatically generated annotations.
SLAM [3] is a global path-sensitive verification method

based on iterative refinement. It starts with a coarse ap-
proximation of the program and adds knowledge to the ab-
straction in a goal directed manner. However, if the initial
abstraction is too coarse, the iteration effort may be too
high. Property simulation can be viewed as a way of pro-
viding an effective starting point for the iteration in SLAM.
The flow-sensitive type qualifier system [19] is similar to

the analysis engine in ESP, but is less precise, because it
does not handle branch correlation, and it is not context-
sensitive with respect to the property state.

Error detection tools. All of these tools statically ex-
amine only some execution paths through the code and/or
ignore aliasing and complex value flow. Therefore, they can-
not guarantee the absence of errors.
Metal [11] is the error detection tool closest in spirit to

ESP. The Metal mechanism for specifying safety properties
and bridging the gap from source code to abstract specifica-
tion was the inspiration for our work. However, our goal is
to guarantee the absence of errors. Unlike Metal, therefore,
we use a combination of two conservative analyses.
The core engine of Metal is a local dataflow analysis sim-

ilar to the standard dataflow analysis described in Section
3. In contrast, our analysis is both inter-procedural and
path-sensitive2.
PREfix [5] is a symbolic evaluator that limits exploration

of program paths by truncating the search within a function
after an a priori bound. PREfix has found many thousands
of errors in very large code bases.
LCLint [13] is based on a mix of type system extensions

2Recent extensions to Metal incorporate some degree of
inter-procedural analysis and path-sensitivity [16].

66

and dataflow analysis. This tool is essentially a local analysis
that uses function annotations if provided.

Language mechanisms. The Vault programming lan-
guage [10] extends the C type system with primitives for
tracking the typestate of data items in the program. The
programmer places annotations on function types; the com-
piler then performs local type checking to verify the code.
The advantage of this approach is that the programmer is
forced to work with the compiler to eliminate all type er-
rors. However, the expressiveness of the language may be
restricted.
Recently, the notion of typestate has been extended to

roles [21]. Roles generalize typestate; the “role” of an object
captures its typestate as well as its involvement in aliasing
relationships. It is not yet clear whether roles can be checked
in a scalable manner.

Specification generators. All of the work described
above requires some specification of a property of interest
from the programmer. Ammons et. al. describe a tech-
nique for inferring property FSMs from execution traces, by
examining patterns of interactions with a library of interest
[1]. Engler et. al. describe a static method that identifies
pairs of functions that must be used in a matched fashion by
looking for pairs of matched function calls along execution
paths [12]. Both of these techniques can be used to generate
property specifications for ESP.

6.2 Path-sensitive dataflow analysis
Our property simulation algorithm follows a long line of

work on path-sensitive dataflow analysis. Previous work in
this area has focused on moving from the maximal-fixed-
point (MFP) solution to the meet-over-all-paths (MOP) so-
lution; For instance, Bodik and Anik introduce a value re-
naming scheme in order to obtain MOP information using
an MFP analysis [4]. Our particular interest is in ruling out
infeasible paths.
One way of viewing our work is that we have improved the

precision of dataflow analysis for our application of property
analysis by tracking a finite set of predicates (those that
arise from property-related branches in the code) in addi-
tion to the standard set of dataflow facts (the FSM states).
Holley and Rosen describe a general method for sharpening
dataflow analysis in which dataflow precision is improved
by adding a finite set of predicates [18]. Tu and Padua pro-
pose a generalized SSA scheme in which SSA merge nodes
are controlled by boolean predicates [26]. Ammons and
Larus present a framework for improving dataflow analy-
sis by splitting out a finite set of interesting paths from the
CFG [2]. Property simulation could be viewed as an in-
stance of these frameworks; the novelty of our approach lies
in the particular choice of predicates and the precision and
efficiency of the resulting analyis.
Our work can also be viewed as providing a way of per-

forming MOP dataflow on an infinite domain of dataflow
facts. Essentially, we have split the infinite domain of con-
crete stores into two components, one of which (the FSM
states) is known to be finite. We then merge based on
the finite component, guaranteeing termination of the anal-
ysis. Steffen presents a method for splitting the CFG during
dataflow analysis whenever the dataflow facts along incom-
ing edges are different [24]. If the dataflow domain is finite,

this strategy leads to an MOP solution in finite time with no
loss in precision. Knoop et al extended this work to infinite
domains by devising a k-limiting heuristic for merging that
guarantees termination [20].
Property simulation is novel in that we employ a heuris-

tic for termination that matches our intuition about verifi-
cation: we maintain precision for those branches that ap-
pear to affect the property to be checked. Our results show
that this heuristic employs the correct merge strategy at
join points. Our work is also different in that we exploit
the special properties of the finite component of the domain
to obtain a polynomial complexity bound for our algorithm.
This is important because our technique is intended for ap-
plication on large programs.
We have implemented inter-procedural property simula-

tion as an extension of the context-sensitive algorithm of
Reps, Horwitz and Sagiv [23]. This formulation allows us
to obtain a more efficient inter-procedural algorithm, and
better argue complexity.

7. CONCLUSIONS
The application of verification technology to large pro-

grams has long been a desirable but unachievable goal. In
this paper, we have described a new algorithm for path-
sensitive program verification that may offer a way of ap-
proaching this goal. Our property simulation algorithm runs
in polynomial time and space and is designed to capture the
common case of correlated branch behavior in programs. We
have used the algorithm to provide the first verification of
temporal safety properties for a program of the size of gcc.

Acknowledgements
We would like to thank the anonymous reviewers for their
comments, Stephen Adams for implementing aspects of ESP,
Matthai Phillipose for his help in re-formulating the algo-
rithm, Jim Larus for reviewing drafts of this paper, mem-
bers of the PPRC team at Microsoft Research for building
the parsing infrastructure used by ESP, and members of the
Software Productivity Tools group at Microsoft Research for
their help in designing ESP.

REFERENCES
[1] G. Ammons, R. Bodik, and J. Larus. Mining

specifications. In Conference Record of the
Twenty-Ninth ACM Symposium on Principles of
Programming Languages, 2002.

[2] G. Ammons and J. Larus. Improving data-flow
analysis with path profiles. In Proceedings of the ACM
SIGPLAN 98 Conference on Programming Language
Design and Implementation, 1998.

[3] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In Proceedings
of SPIN ’01, 8th Annual SPIN Workshop on Model
Checking of Software, May 2001.

[4] R. Bodik and S. Anik. Path-sensitive value-flow
analysis. In Symposium on Principles of Programming
Languages, pages 237–251, 1998.

[5] W. Bush, J. Pincus, and D. Sielaff. A static analyzer
for finding dynamic programming errors. Software -
Practice and Experience, 30(7):775–802, 2000.

67

[6] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, 1977.

[7] M. Das. Unification-based pointer analysis with
directional assignments. In Proceedings of the ACM
SIGPLAN 2000 Conference on Programming
Language Design and Implementation, 2000.

[8] M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive
Program Verification in Polynomial Time. Technical
Report MSR-TR-2002-41, Microsoft Corporation,
2002.

[9] M. Das, B. Liblit, M. Fähndrich, and J. Rehof.
Estimating the Impact of Scalable Pointer Analysis on
Optimization. In 8th International Symposium on
Static Analysis, 2001.

[10] R. Deline and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, 2001.

[11] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of the sixth USENIX Conference on
Operating systems design and implementation, 2000.

[12] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001.

[13] D. Evans. Static detection of dynamic memory errors.
In Proceedings of the ACM SIGPLAN 96 Conference
on Programming Language Design and
Implementation, 1996.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended Static
Checking for Java. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming
Language Design and Implementation, 2002.

[15] C. Flanagan and R. Leino. Houdini, an annotation
assistant for esc/java. In Symposium of Formal
Methods Europe, March 2001., 2001.

[16] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, 2002.

[17] C. A. R. Hoare. An axiomatic basis for computer
programming. In C. A. R. Hoare and C. B. Jones
(Ed.), Essays in Computing Science, Prentice Hall.
1989.

[18] L. Holley and B. Rosen. Qualified dataflow analysis.
In Conference Record of the Seventh ACM Symposium
on Principles of Programming Languages, 1980.

[19] A. Aiken J. S. Foster, T. Terauchi. Flow-Sensitive
Type Qualifiers. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design
and Implementation, 2002.

[20] J. Knoop, O. Rüthing, and B. Steffen.
Expansion-based removal of semantic partial
redundancies. In Proceedings of the 8th International

Conference on Compiler Construction (CC’99)
(Amsterdam, The Netherlands), Lecture Notes in
Computer Science, vol. 1575, pages 91 – 106.
Springer-Verlag, Heidelberg, Germany, 1999.

[21] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Conference Record of the Twenty-Ninth ACM
Symposium on Principles of Programming Languages,
2002.

[22] G. Nelson and D. C. Oppen. Simplification by
cooperating decision procedures. TOPLAS: ACM
Transactions on Programming Languages and
Systems, 1(2):245–257, 1979.

[23] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural data ow analysis via graph
reachability. In Conference Record of the
Twenty-Second ACM Symposium on Principles of
Programming Languages, 1995.

[24] B. Steffen. Property-oriented expansion. In
LNCS 1145, 3rd International Symposium on Static
Analysis, 1996, pages 22–41. Springer-Verlag, 1996.

[25] R. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.
IEEE Transactions on Software Engineering,
12(1):157–171, 1986.

[26] P. Tu and D. Padua. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. In
Proceedings of the 1995 ACM International
Conference on Supercomputing, Barcelona, Spain,
1995.

[27] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the
ACM SIGPLAN 95 Conference on Programming
Language Design and Implementation, 1995.

68

