Development Models:
Extreme Programming

SimSE:
Software Development Simulation Game

11/29/12

Plan for today

* What’s coming up next week

* Brief wrap up of 521/621 material

* Course evaluations

* SimSE: Software Development Simulation Game

Coming up

* Final project reports due:
Friday, Dec 7, 11:59 PM EST

* Final project presentations:
Tuesday, Dec 4 and Thursday, Dec 6, in class
presentation order picked at random, on Dec 4

521/621
Advanced Software Engineering
Analysis and Evaluation

What have we learned?

Software Engineering before this class

You knew how to build software systems
— design
— specify
— develop
— document
— test

— maintain




Software Engineering after this class

Now you know

—how to reason about software
— what can be done automatically
— what can be proven

— what cannot be proven

Let’s consider some highlights

What’s hard about specification?

* User communication

— Most common cause of project failure:
not involving the users

* Getting on the same page
— Without a careful approach, even designing small
systems in small teams quickly leads to ambiguities
and misunderstandings
* User interface can make or break a system
— People won’t use your app
— Luggage gets lost
— People can die

Can we compute anything?

* Undecidability

— Most problems cannot have a program written to
solve them

— This bounds the power of static analysis:
can’t prove simple things
(e.g., if a line can ever execute) in general
* There are
— As many rational numbers as integers

— Many, many more irrational numbers than integers

11/29/12

Dynamic Analysis techniques

* Automatic property inference

— Daikon: run tests, extract properties over data values

* Speculative analysis

— Crystal: learn about conflicts as soon as they happen

— Quick Fix Scout: learn about effects of menus

Static Analysis

Automatic test generation

— Can use documentation (pre- and post-conditions) to
generate tests automatically

— Or combine with Daikon to infer pre- and post-
conditions

Formally verify system correctness
— FLAVERS: prove state reachability, safety properties

Debugging

When and how to debug

— Make errors impossible by design

— Think before you code: make code right

— Make errors immediately visible: don’t hide

— Last resort: form a hypothesis, test it,
trace through code, find bug

* Performance

— In some domains, as important as correctness

— Path tracing leads in accurate runtime complexity
measures




11/29/12

Automatic Debugging What | hope you walk away with
* Minimize cause of failure: Delta Debugging * Research skills: pushing the state-of-the-art
— Find the smallest input that causes a test to fail
— Undo a small subset of latest changes « How to use the latest ideas in
* Automatically remove errors: Genprog software engineering in your work
— Use tests to guide search through program space
— Automatically generate a patch « Where to find a solution to your
— Works for small fixes, but... software engineering problems
Can it work for generating programs from scratch?

Development Models:

Evaluations .
Extreme Programming

SimSE:
Software Development Simulation Game

SimSE: Software Development
Simulation Game

http://people.cs.umass.edu/~brun/class/CS521.621/SimSE




