11/20/12

Midterm Projects, etc.

* Grades and solutions are (and have been) on Moodle .
* The midterm was hard[er than | thought]
— grades will be scaled

Thank you for the project updates
* Everyone who submitted

* | gave everyone a 10 bonus point should have gotten a response
(already included in your total) * If you didn’t submit, why not?
max: 98
mean: 71
min: 45 * Final report due Dec 7, 11:59 PM

standard deviation: 13

| will pass graded midterms back at end of today’s class * Homework 3 is up, due Nov 29

Path-Based Static Analysis

Static analysis we know Example

* We've looked at static (and dynamic) analysis int increment(int num) {
that:

— identifies invariants

print (num);
print(“Have a nice day”);

— describes a method'’s effect
return num+l;

}

What can we tell, statically, about the method’s
effects?

— maps inputs to outputs

return value > num
return value 1 more than num

Dynamic analysis too

 Daikon can tell you (sometimes complex)
relationships between variables

* Temporal relationships are also possible
for example:
— .close() is always preceded by .open()
— .close() is never followed by .open()

11/20/12

Problems with dynamic analysis

* Unsound: A property is not guaranteed to be true
— .close() is never followed by .open():
maybe we simply never say an .open() after a .close()

* Incomplete: We may never observe some property

— If we never see a .open(), how can we know that must
be followed by .close()?

Static analysis

* Can static analysis alleviate these problems?
* Is static analysis sound?
* |s static analysis complete?

¢ Well, maybe. Butit’s hard!
— summaries can be hard to compute
— analysis must account for all paths through the method
— summary language generally must be very expressive

Another approach: path-based

* An alternative to summaries is to perform
path-based analysis

* Analyze just one path through the method at
atime

* This approach is conceptually simpler
—and often simpler to implement

Example

void myRead(File f) throws BadException {
if (f.exists()) {
f.open();
print(f.readLine());
} else {
throw new BadException(“f does not exist”);

What can we tell, statically, about when the exception is
thrown?

Only if f.exists() == false

Larger example

void myRead(File f) throws BadException {
if (today() == day.MONDAY) {
if (f.exists()) {
f.open();
print(f.readLine());
} else {
throw new BadException(“f !exist”);a
} else {
print(“fake line”);
}
}

11/20/12

Issues

* There can be a lot of paths:
n conditionals = up to 2" paths

* There can be A LOT of paths:
loops, recursive functions, etc.

¢ Let’s ignore these issues for now (just for now)

Finite State Properties

Let’s use FSMs to describe (specify) a class:

Two states: Open and Closed
An Open file can be closed

A Closed file can be opened
Other transitions are errors

First, simple algorithm

For each path:
track the transitions and states through the FSM

Example with simple algorithm

assume we start in Close

void myRead(boolean dump, File f) {

int x = 1;

if (dump) { // explore TRUE branch
x = 0;
f.open();
f.write(DATA);

}
if (dump && X==1) //explore TRUE branch
f.close();

What went wrong?
assume we start in Close
void myRead(boolean dump, File f) {
int x = 1;
if (dump) { // explore TRUE branch
x = 0;
f.open();
f.write(DATA);

}
if (dump && xX==1) //explore TRUE branch
f.close();

This path is not possible!

Second algorithm

Keep track of the branch decisions on paths

Create an “abstract state,” which is a

combination: <file state, predicate>
predicate is a conjunction of all the branch
conditions observed on the path

If the predicate is false, we know the

path is impossible

11/20/12

Example with second algorithm

assume we start in Close

Still not enough!

* Keeping track of just predicates, can eliminate
some bad paths.

void myRead(boolean dump, File f) {
int x = 1;
if (dump) { // explore TRUE branch
x = 0;
f.open();
f.write(DATA);
}
if (dump && xX==1) //explore TRUE branch
f.close();
}
What paths can we eliminate?
assume we start in Close
void myRead(boolean dump, File f) {

int x = 1;
if (dump) { // explore TRUE branch
x = 0;
f.open();
f.write(DATA);
}
if (! dump_&'&%;}) // explore TRUE branch
f.close();

Still not enough!

* Keeping track of just predicates, can eliminate
some bad paths.

* To eliminate more, we need to keep track of
relevant variable values.

Third algorithm

* Examine all branch predicates and keep track of all
variables in those predicates
dump, x
* Keep track of the branch decisions on paths

¢ Create an “abstract state,” which is a combination:
<file state, larger predicate>
larger predicate is a conjunction of all the branch
conditions observed on the path with variables’ values

« If the predicate is false, we know the path is
impossible

Example with third algorithm
assume we start in Close
void myRead(boolean dump, File f) {
int x = 1;
if (dump) { // If we explore TRUE branch here
x = 0;
f.open();
f.write(DATA);

}
if (dump && x==1) // we won’t explore TRUE branch here
f.close();

In practice

* This can actually work
— except those unresolved issues with loops and recursion
* Requires:
— A theorem prover: something that can deduce whether a
predicate is false
— A way of accurately modeling branch predicates
* Ahard problem in general. Why?

— because branch predicates can be arbitrary code and we know arbitrary
code can be undecidable!

* But many predicates are easy in practice

11/20/12

So does this really work?

* For very small programs, sure.

* But for large program, there are simply
too many paths

* So in practice, this approach has not scaled.
The exponential blow up in paths does not
allow applying this to large programs.

Where does it work?

* Single method analysis
* Small class analysis
* Small modules?

The program can be large, but if you analyze
small modules, it can be helpful.

Can we do better?

* If we only care about a particular property,
— such as can open be followed by open

* Then many paths may be irrelevant
void tests(int x, int y) {
if (x == 5) x++; else --x;
if (y == 6) new File().open();
else new File().close();

Do we care about value of x and its predicates?

Key question

* So we want a compromise:

naive approach was not enough,
but keeping track of all predicates was too much

* How can we model only the predicates
relevant to the property we care about?

Idea
* Give up on analyzing one path at a time
* Instead, analyze all paths at once

* When paths split, keep track of them all
* When paths join
— join all abstract states with the same information
— this limits the number of possible abstract states by
the number of FSM states
* In other words, keep track of the predicates, but
now we’ll have AND and OR of the predicates

Why does it work

* In essence, we are trying to note relevant
correlations between predicates and states

void method() {
if (q) flag = 1;
else flag = 0;

if (q) ..
else ..

}

common pattern, as are more elaborate variations

11/20/12

OK, back to loops and recursion

* Consider the following example

foo(x, y) {
if (x == 0) return; open(y);
close(y);
foo(x-1, y);

Recursive constraints

* Like any static analysis, recursion and looping
introduces recursive constraints

* If we have an initial estimate of what to track,
we can iteratively improve it

* Typically, each time around the loop will not
add a new constraint. There is a finite number
of constraints, and the solution space is finite.

What else is hard with path analysis?

 Aliasing is two variables pointing to the same
object

 Aliasing can be very tricky

void method(boolean b) {
if (b) .. else ..
d = b;
if (d) .. else ..

What if d = function(b)?
Could be anything

Another aliasing example

void method() {
File f = new File(PATH);
File myFile = f£f;
myFile.open();
List 1 = new LinkedList();
while (1l.isEmpty())

l.add(myFile);

File g = (File) l.get(0);
g.close();

Is f open or closed at the end?

What if you have multiple values

For example, suppose we are dealing with 3
files, all at once.

* One solution is to run our analysis 3 times,
once per each file.

* Have to resolve which aliases map to that file.

* Must compute all predicate information for
those aliases.

ESP

* Error Detection via Scalable Program Analysis
* Sound: everything it returns is true
* Incomplete: won't return all true things
 Verified file handling in gcc:
— 140K lines of code
— 600+ file manipulation calls
* Advantage: strong guarantee
— Not “I didn’t find any bugs,” but
— Proof that the program will always correctly handle
files, regardless of input

http://www.microsoft.com/windows/cse/pa_projects.mspx

11/20/12

ESP experience

Was originally a university research project

* Went on to become a production tool within
Microsoft

* Used on many core Windows projects
* Very successful

¢ But used mostly as a “bug finder,” not prover

* Reason: alias analysis was not precise enough to
limit mistakes on truly large programs

ESP is simple, but...

* Even simpler than we discussed:
— very simple model of program state
— only reasons about paths

¢ But, the complexity is hidden:
— theorem prover
— alias analysis

* Also, requires the entire program and cannot be
used on a module in isolation

Summary

* ESP can prove the absence of certain types of bugs
in a program:
— for example, closing a closed file

Recursion, large number of paths, aliasing make
the problem very complex

* Successful tool, used in industry at Microsoft

Midterm

* Grades and solutions are (and have been) on Moodle
* The midterm was hard[er than | thought]
— grades will be scaled
* | gave everyone a 10 bonus point
(already included in your total)

max: 98
mean: 71
min: 45

standard deviation: 13

| will pass back graded midterms now

