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FLAVERS (FLow Analysis for VERification of Systems) 
http://laser.cs.umass.edu/tools/flavers 

Based on slides by Lori Clarke 
Presented by Heather Conboy 

+
Motivation 
n  Software systems increasingly relied upon in many critical 

domains 
n  e.g., aeronautics, banking 

n  If system contains an error, then it could lead to serious harm 
to peoples’ lives and livelihoods 
n  e.g, people could be injured or killed, money could be lost  

n  Thus systems need to be validated to gain assurance that the 
systems satisfy their properties 
n  One common validation approach is finite-state verification 

techniques that algorithmically check whether or not all potential 
executions of a system satisfy a given property 
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+
Architecture of Finite State Verifier 
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3 +
Examples of Properties 

n  No deadlock 

n  Mutual exclusion 

n  Always define variable v before use variable v 

n  For an elevator controller, always close doors before move 

n  For a file, never throw an IO exception 
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+Examples of  
Finite-State Verification (FSV) Tools 

n Based on techniques such as: 
n Reachability, e.g,  Spin, SMV, LTSA 
n Linear programming, e.g., INCA   
n Data flow analysis, e.g., FLAVERS 

n Ada, Java, or Little-JIL 

5 +
History of Data Flow Analysis for 
Verification 

n  Mid-70’s: Originally proposed for def-ref anomalies in 
FORTRAN systems (Osterweil and Fosdick) 

n  Early 80’s: Extended to general properties (Olender and 
Osterweil) & concurrency (Taylor and Osterweil) 

n  90’s primarily for properties of Ada systems 
n  Deadlock detection (Masticola and Ryder) 

n  Efficient representation of concurrency & incremental precision 
improvement (Dwyer and Clarke) 

n  Recent: Optimizations, Java systems (Avrunin, Clarke, 
Cobleigh, Naumovich, and Osterweil) 
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7 +
Example: Elevator Controller 

n  A building with multiple floors has an elevator controller in 
charge of a single car 
n  The passengers must be able to safely use the elevator car 

n  The car is initially stopped 
n  The car may move between floors 

n  The car doors are initially closed 
n  The car doors may be opened or closed 
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FLAVERS is Event-based 

n  Recognizable events such as 
n  Method calls 

n  e.g., Close must be called before move 

n  Thread interactions 

n  e.g., Start must be called before Join 

n  Arbitrary operations 

n  e.g., S=true, IOException thrown  

n  Need to be able to treat events as indivisible actions 
n  e.g., can treat close and move as atomic as long as they do not 

contain any events of concern 

9 +
Properties 

n  Many interesting and important properties can be specified 
as a regular language and then represented as an FSA 
n  Directly specified as FSA 

n  Specified as quantified regular expression (QRE) and then 
converted from a QRE to an FSA 

n  Quantified means either: 
n  An all property is a behavior that must always happen on all 

possible executions 

n  A none property is a behavior that must never happen on any 
possible execution 
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+ Example: All Property 
NATURAL LANGUAGE DESCRIPTION: 

 The elevator always closes its doors before moving 
 
QUANTIFIED REGULAR EXPRESSION: 

 for events { open, close, move} 
 show all executions satisfy 
 ((close | move)*; (open+; close)*)*; open* 

 
FSA: 

1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

11 +
Representing System Models 

n  Trace Flow Graph (TFG) 
n  collection of annotated control flow graphs 
n  intertask communication and interleavings are represented 

with additional nodes & edges 
n  does not enumerate all reachable system states 

n  Conservative but over-approximates actual executable 
behaviors 
n  All actual executions correspond to at least one potential 

execution 
n  Some potential executions do not correspond to any actual 

execution 
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Abstracting System Models 

n TFG abstracts information to be 
tractable, e.g., 
n Only model variables relevant to 

property 
n Abstract values of variable, e.g., 
n Concrete x is Integer 
n Abstract x is (x<0, x==0, x>0) 

n Conservative abstractions usually 
overapproximate behavior 

13 + Example: System Model as TFG 

public class Elevator {    
    boolean stopped; 
     … 
     public static void main() { 
       … 
1:    if (stopped) { 
2:         openDoors(); 
       } 
       … 
 3:   if (stopped) { 
 4:        closeDoors(); 
       } 
 5:   moveToNextFloor(); 
     } // end of main 
} // end of Elevator 

1: if 

2: open 

4: close 

5: move 

3: if 
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Overview of Verification Algorithm: 
State Propagation Algorithm 

n Given a system modeled as a TFG and a given 
property represented as an FSA 

n Each node of the TFG is associated with the states 
of the property that the system could be in at that 
point in the system 

n Data flow analysis propagates states through the 
nodes 
n  Since there are a finite number of states and nodes, a fixed 

point will be reached and the verification results can then 
be determined 

15 +
Details about the State propagation 
Algorithm 

n  Initially, the start state of the property is associated with the 
initial node of the TFG  

n  On each iteration, update the set of states associated with the 
current node 
n  Apply the event annotating the current node to all sets of states 

associated with all previous nodes of the TFG  

n  When fixed point is reached, the verification results are 
determined by considering the set of states associated with 
the final node of the TFG 
n  An all property is verified if only accepting states 

n  A none property is verified if only non-accepting states 
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Example: State-Propagation for 
Initial Node 1 1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 
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1: if 

2: open 

4: close 

5: move 

3: if 

Worklist: 1 

{1} 

17 Example: State-Propagation for 
Node 2 1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

1: if 

2: open 

4: close 

5: move 

3: if 

Worklist: 1, 2, 3 

{1} 

{2} 
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Example: State-Propagation for 
Node 4 1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

1: if 

2: open 

4: close 

5: move 

3: if 

Worklist: 1, 2, 3, 4, 5 

{1} 

{2} 

{1,2} 

19 Example: State-Propagation 
Fixed Point 1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

1: if 

2: open 

4: close 

5: move 

3: if 

Worklist: 1, 2, 3, 4, 5 

{1} 

{2} 

{1,2} 

{1} 

{1,3} 
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Example: State-Propagation 
Determining Verification Results 1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

1: if 

2: open 

4: close 

5: move 

3: if 

Worklist: 1, 2, 3, 4, 5 

{1} 

{2} 

{1,2} 

{1} 

{1,3} 

Property not verified 
because final node 5  
is associated with property  
non-accepting state 3 

Counterexample execution 
 is 1, 2, 3, 5 

21 +
Interpreting Verification Results 

n  If property verified, property satisfied for all possible traces of 
the system 

n  If property not verified: 
n  A real counterexample that illustrates property violation 

n  system error found 
n  modeling error found (in the system or in the property) 

n  OR 
n  A spurious result when inconsistency relies upon 

overapproximations of system model 
n  e.g. every counterexample corresponds to an infeasible 

path 
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Incrementally Adding Precision to 
System Models 
n  Constraints describe conditions necessary for feasible 

execution represented as FSAs 

n  Special violation state is entered when an infeasible path 
is detected 
n  Violation is a trap state; once it is entered, never leave that 

state 

23 + Example:  
Variable Constraint for stopped 

24 

u 

f 

v 

S==t 

S=u, S=f, S=t, 
S==u, S==f, S==t 

S=u, 
S==u 

t 

S=f, 
S==f 

S=t, 
S==t 

S==f 

S=t 

S=f 

S=f, 
S==f 

S=t, 
S==t 

LEGEND 
•  S is Stopped 
•  == is predicate 
•  = is assignment 



11/15/12	  

5	  

+ Example: More Precise TFG with 
Stopped events 
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1: if 

2: open 

4: close 

5: move 

3: if 

1a: S==t 1b: S==f 

3a: S==t 3b: S==f 

public class Elevator {    
    boolean stopped; 
     … 
     public static void main() { 
       … 
1:      if (stopped) { 
2:         openDoors(); 
         } 
         … 
 3:     if (stopped) { 
 4:        closeDoors(); 
         } 
 5:     moveToNextFloor(); 
     } // end of main 
} // end of Elevator 

+ Architecture of FLAVERS Incorporating 
Constraints 
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Other Examples of Constraints 

n  Automatically generated 
n  Variable constraint tracks value of given variable 

n  Supported types of variables are boolean, enumerated, integer 
range  

n  Task constraint tracks program counter of given task 

n  User-defined, e.g., 
n  Assumptions about environment 

27 +
State Propagation Algorithm 
Incorporating Constraints 

n  Each node associated with a set of tuples 
n  Each tuple has a position for each property FSA and each 

constraint FSA 

n  If the current node is associated with a current tuple where a 
constraint FSA reached its violation state, then that tuple is 
not propagated to any next nodes 

n  Result looks at paths that are feasible with respect to the 
constraints 
n  The property state is the same as before 

n  Every constraint must be in an accepting state  
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Example: State-Propagation for 
Initial Node 1 

29 

u
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v 
S==t 

S=u, S=f, S=t, 
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S==f 
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S=f 

S=f, 
S==f 

S=t, 
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1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

Worklist: 1 

1: if 

2: open 

4: close 

5: move 

3: if 

1a: S==t 1b: S==f 

3a: S==t 3b: S==f 

{<1,u>} 

Example: State-Propagation for 
Node 4a 
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u

f 

v 
S==t 

S=u, S=f, S=t, 
S==u, S==f, S==t 

S=u, 
S==u 

t 

S=f, 
S==f 

S=t, 
S==t 

S==f 

S=t 

S=f 

S=f, 
S==f 

S=t, 
S==t 

1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

Worklist: 1, 1a, 1b, 2, 3, 
                 3a, 3b, 4 

1: if 

2: open 

4: close 

5: move 

3: if 

1a: S==t 1b: S==f 

3a: S==t 3b: S==f 

{<1,u>} 

{<1,t>} {<1,f>} 

{<2,t>} 
{<2,t>,  
 <1,f>} 

{<2,v>,  
 <1,f>} 
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Example: State-Propagation  
Fixed Point 

31 

u
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v 
S==t 

S=u, S=f, S=t, 
S==u, S==f, S==t 

S=u, 
S==u 

t 

S=f, 
S==f 

S=t, 
S==t 

S==f 

S=t 

S=f 

S=f, 
S==f 

S=t, 
S==t 

1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

Worklist: 1, 1a, 1b, 2, 3, 
                 3a, 3b, 4, 5 

1: if 

2: open 

4: close 

5: move 

3: if 

1a: S==t 1b: S==f 

3a: S==t 3b: S==f 

{<1,u>} 

{<1,t>} {<1,f>} 

{<2,t>} 
{<2,t>,  
 <1,f>} 

{<2,v>,  
<1,f>} 

{<2,t>, <1,v>} 

{<1,t>} 

{<1,t>, <1,f>} 

Example: State-Propagation  
Results 
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u

f 

v 
S==t 

S=u, S=f, S=t, 
S==u, S==f, S==t 

S=u, 
S==u 

t 

S=f, 
S==f 

S=t, 
S==t 

S==f 

S=t 

S=f 

S=f, 
S==f 

S=t, 
S==t 

1 

2 

3 

open 

move open, 
close, 
move 

close 

close, 
move 

open 

Worklist: 1, 1a, 1b, 2, 3, 
                 3a, 3b, 4, 5 

1: if 

2: open 

4: close 

5: move 

3: if 

1a: S==t 1b: S==f 

3a: S==t 3b: S==f 

{<1,u>} 

{<1,t>} {<1,f>} 

{<2,t>} 
{<2,t>,  
 <1,f>} 

{<2,v>,  
<1,f>} 

{<2,t>, <1,v>} 

{<1,t>} 

{<1,t>, <1,f>} 

Property verified 
because final node 6 
associated with 
accepting property state 1  

+
Discussion about FLAVERS 
n Overall complexity is O(N^2⋅S) 

n N is the # nodes in the model 
n S is the number of states: property x constraints 
n More precisely O(N^2 ⋅ SP ⋅ SC1 ⋅…⋅ SCn) 

n In our experience, many important properties can 
be proven with a small number of constraints 
n Experimentally: performance sub-cubic 

33 +
Evaluation of FLAVERS 

n  Applied to collection of concurrent and sequential systems 
such as 
n  elevator, dining philosophers, reader writers, producers 

consumers, Chiron user interface 

n  Measured 
n  Size of system model 

n  Number of the TFG nodes and edges 

n  Number of constraints needed 

n  Performance in terms of space and time 
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Benefits of FLAVERS 

n  Data Flow Analysis determines if the property is valid or not 

n  Efficient 

n  Always terminates 

n  Conservative 

n  Only validates the property if it is true for all/no possible 
executions 

n  When it can not validate the property, it provides a counter 
example trace 

n  Relatively easy to use 

n  Relatively easy to write properties compared to predicate 
calculus or temporal logic 

n  Do not have to understand how the system works 

35 +
Drawbacks of FLAVERS 

n  Cannot express some properties of interest 
n  Deadlock 

n  Compound data types, e.g., for all I, A[ I ] > A[I+1] 

n  Some counting, e.g, # Inserts > # Deletes 

n  Infeasible paths 
n  Usually requires several iterations to determine needed 

constraints 
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+ Comparative Evaluation of FSV Tools 37 + Comparative Evaluation of FSV Tools 38 

+
Some Research Directions for FSV 

n  Support for specifying properties, e.g., 
n  Property patterns 

n  Support for modeling systems, e.g., 
n  eliminating infeasible paths by employing such techniques as 

symbolic execution or theorem proving 

n  abstracting variable values  

n  Support for optimizing verification algorithms, e.g., 
n  Alphabet refinement, partial order reduction, symbolic 

representations 

n  Support for visualizing counterexample traces 

39 +
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+
Demonstration of FLAVERS 
for Java… 
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