
11/15/12	

1	

+

FLAVERS (FLow Analysis for VERification of Systems)
http://laser.cs.umass.edu/tools/flavers

Based on slides by Lori Clarke
Presented by Heather Conboy

+
Motivation
n  Software systems increasingly relied upon in many critical

domains
n  e.g., aeronautics, banking

n  If system contains an error, then it could lead to serious harm
to peoples’ lives and livelihoods
n  e.g, people could be injured or killed, money could be lost

n  Thus systems need to be validated to gain assurance that the
systems satisfy their properties
n  One common validation approach is finite-state verification

techniques that algorithmically check whether or not all potential
executions of a system satisfy a given property

2

+
Architecture of Finite State Verifier

System

Property

System
Translator

Property
Translator

Verification
Algorithm

Property not verified
+
Counterexample execution

Property verified

Property
Representation

System
Model

3 +
Examples of Properties

n  No deadlock

n  Mutual exclusion

n  Always define variable v before use variable v

n  For an elevator controller, always close doors before move

n  For a file, never throw an IO exception

4

+Examples of
Finite-State Verification (FSV) Tools

n Based on techniques such as:
n Reachability, e.g, Spin, SMV, LTSA
n Linear programming, e.g., INCA
n Data flow analysis, e.g., FLAVERS

n Ada, Java, or Little-JIL

5 +
History of Data Flow Analysis for
Verification

n  Mid-70’s: Originally proposed for def-ref anomalies in
FORTRAN systems (Osterweil and Fosdick)

n  Early 80’s: Extended to general properties (Olender and
Osterweil) & concurrency (Taylor and Osterweil)

n  90’s primarily for properties of Ada systems
n  Deadlock detection (Masticola and Ryder)

n  Efficient representation of concurrency & incremental precision
improvement (Dwyer and Clarke)

n  Recent: Optimizations, Java systems (Avrunin, Clarke,
Cobleigh, Naumovich, and Osterweil)

6

11/15/12	

2	

+
Architecture of FLAVERS

System
(Source
code)

Property
(RE or
FSA)

System
Translator

Property
Translator

Verification
Algorithm
(data flow
analysis)

Property may be violated
+
Counterexample execution
(Path through graph)

Property satisfied

Property
Representation
(FSA)

System
Model
(Trace
 Flow
 Graph)

7 +
Example: Elevator Controller

n  A building with multiple floors has an elevator controller in
charge of a single car
n  The passengers must be able to safely use the elevator car

n  The car is initially stopped
n  The car may move between floors

n  The car doors are initially closed
n  The car doors may be opened or closed

8

+
FLAVERS is Event-based

n  Recognizable events such as
n  Method calls

n  e.g., Close must be called before move

n  Thread interactions

n  e.g., Start must be called before Join

n  Arbitrary operations

n  e.g., S=true, IOException thrown

n  Need to be able to treat events as indivisible actions
n  e.g., can treat close and move as atomic as long as they do not

contain any events of concern

9 +
Properties

n  Many interesting and important properties can be specified
as a regular language and then represented as an FSA
n  Directly specified as FSA

n  Specified as quantified regular expression (QRE) and then
converted from a QRE to an FSA

n  Quantified means either:
n  An all property is a behavior that must always happen on all

possible executions

n  A none property is a behavior that must never happen on any
possible execution

10

+ Example: All Property
NATURAL LANGUAGE DESCRIPTION:

 The elevator always closes its doors before moving

QUANTIFIED REGULAR EXPRESSION:

 for events { open, close, move}
 show all executions satisfy
 ((close | move)*; (open+; close)*)*; open*

FSA:

1

2

3

open

move open,
close,
move

close

close,
move

open

11 +
Representing System Models

n  Trace Flow Graph (TFG)
n  collection of annotated control flow graphs
n  intertask communication and interleavings are represented

with additional nodes & edges
n  does not enumerate all reachable system states

n  Conservative but over-approximates actual executable
behaviors
n  All actual executions correspond to at least one potential

execution
n  Some potential executions do not correspond to any actual

execution

12

11/15/12	

3	

+
Abstracting System Models

n TFG abstracts information to be
tractable, e.g.,
n Only model variables relevant to

property
n Abstract values of variable, e.g.,
n Concrete x is Integer
n Abstract x is (x<0, x==0, x>0)

n Conservative abstractions usually
overapproximate behavior

13 + Example: System Model as TFG

public class Elevator {
 boolean stopped;
 …
 public static void main() {
 …
1: if (stopped) {
2: openDoors();
 }
 …
 3: if (stopped) {
 4: closeDoors();
 }
 5: moveToNextFloor();
 } // end of main
} // end of Elevator

1: if

2: open

4: close

5: move

3: if

14

+
Overview of Verification Algorithm:
State Propagation Algorithm

n Given a system modeled as a TFG and a given
property represented as an FSA

n Each node of the TFG is associated with the states
of the property that the system could be in at that
point in the system

n Data flow analysis propagates states through the
nodes
n  Since there are a finite number of states and nodes, a fixed

point will be reached and the verification results can then
be determined

15 +
Details about the State propagation
Algorithm

n  Initially, the start state of the property is associated with the
initial node of the TFG

n  On each iteration, update the set of states associated with the
current node
n  Apply the event annotating the current node to all sets of states

associated with all previous nodes of the TFG

n  When fixed point is reached, the verification results are
determined by considering the set of states associated with
the final node of the TFG
n  An all property is verified if only accepting states

n  A none property is verified if only non-accepting states

16

Example: State-Propagation for
Initial Node 1 1

2

3

open

move open,
close,
move

close

close,
move

open

1: if

2: open

4: close

5: move

3: if

Worklist: 1

{1}

17 Example: State-Propagation for
Node 2 1

2

3

open

move open,
close,
move

close

close,
move

open

1: if

2: open

4: close

5: move

3: if

Worklist: 1, 2, 3

{1}

{2}

18

11/15/12	

4	

Example: State-Propagation for
Node 4 1

2

3

open

move open,
close,
move

close

close,
move

open

1: if

2: open

4: close

5: move

3: if

Worklist: 1, 2, 3, 4, 5

{1}

{2}

{1,2}

19 Example: State-Propagation
Fixed Point 1

2

3

open

move open,
close,
move

close

close,
move

open

1: if

2: open

4: close

5: move

3: if

Worklist: 1, 2, 3, 4, 5

{1}

{2}

{1,2}

{1}

{1,3}

20

Example: State-Propagation
Determining Verification Results 1

2

3

open

move open,
close,
move

close

close,
move

open

1: if

2: open

4: close

5: move

3: if

Worklist: 1, 2, 3, 4, 5

{1}

{2}

{1,2}

{1}

{1,3}

Property not verified
because final node 5
is associated with property
non-accepting state 3

Counterexample execution
 is 1, 2, 3, 5

21 +
Interpreting Verification Results

n  If property verified, property satisfied for all possible traces of
the system

n  If property not verified:
n  A real counterexample that illustrates property violation

n  system error found
n  modeling error found (in the system or in the property)

n  OR
n  A spurious result when inconsistency relies upon

overapproximations of system model
n  e.g. every counterexample corresponds to an infeasible

path

22

+
Incrementally Adding Precision to
System Models
n  Constraints describe conditions necessary for feasible

execution represented as FSAs

n  Special violation state is entered when an infeasible path
is detected
n  Violation is a trap state; once it is entered, never leave that

state

23 + Example:
Variable Constraint for stopped

24

u

f

v

S==t

S=u, S=f, S=t,
S==u, S==f, S==t

S=u,
S==u

t

S=f,
S==f

S=t,
S==t

S==f

S=t

S=f

S=f,
S==f

S=t,
S==t

LEGEND
•  S is Stopped
•  == is predicate
•  = is assignment

11/15/12	

5	

+ Example: More Precise TFG with
Stopped events

25

1: if

2: open

4: close

5: move

3: if

1a: S==t 1b: S==f

3a: S==t 3b: S==f

public class Elevator {
 boolean stopped;
 …
 public static void main() {
 …
1: if (stopped) {
2: openDoors();
 }
 …
 3: if (stopped) {
 4: closeDoors();
 }
 5: moveToNextFloor();
 } // end of main
} // end of Elevator

+ Architecture of FLAVERS Incorporating
Constraints

System
(Source
code)

Property
(RE or
FSA)

System
Translator

Property
Translator

Verification
Algorithm
(data flow
analysis)

Property may be violated
+
Counterexample execution
(Path through TFG)

Property satisfied

Property
Representation
(FSA)

System
Model
(TFG)

Constraints
(REs or FSAs)

Constraint
Translator

Constraints
Representation
(FSAs)

26

+
Other Examples of Constraints

n  Automatically generated
n  Variable constraint tracks value of given variable

n  Supported types of variables are boolean, enumerated, integer
range

n  Task constraint tracks program counter of given task

n  User-defined, e.g.,
n  Assumptions about environment

27 +
State Propagation Algorithm
Incorporating Constraints

n  Each node associated with a set of tuples
n  Each tuple has a position for each property FSA and each

constraint FSA

n  If the current node is associated with a current tuple where a
constraint FSA reached its violation state, then that tuple is
not propagated to any next nodes

n  Result looks at paths that are feasible with respect to the
constraints
n  The property state is the same as before

n  Every constraint must be in an accepting state

28

Example: State-Propagation for
Initial Node 1

29

u

f

v
S==t

S=u, S=f, S=t,
S==u, S==f, S==t

S=u,
S==u

t

S=f,
S==f

S=t,
S==t

S==f

S=t

S=f

S=f,
S==f

S=t,
S==t

1

2

3

open

move open,
close,
move

close

close,
move

open

Worklist: 1

1: if

2: open

4: close

5: move

3: if

1a: S==t 1b: S==f

3a: S==t 3b: S==f

{<1,u>}

Example: State-Propagation for
Node 4a

30

u

f

v
S==t

S=u, S=f, S=t,
S==u, S==f, S==t

S=u,
S==u

t

S=f,
S==f

S=t,
S==t

S==f

S=t

S=f

S=f,
S==f

S=t,
S==t

1

2

3

open

move open,
close,
move

close

close,
move

open

Worklist: 1, 1a, 1b, 2, 3,
 3a, 3b, 4

1: if

2: open

4: close

5: move

3: if

1a: S==t 1b: S==f

3a: S==t 3b: S==f

{<1,u>}

{<1,t>} {<1,f>}

{<2,t>}
{<2,t>,
 <1,f>}

{<2,v>,
 <1,f>}

11/15/12	

6	

Example: State-Propagation
Fixed Point

31

u

f

v
S==t

S=u, S=f, S=t,
S==u, S==f, S==t

S=u,
S==u

t

S=f,
S==f

S=t,
S==t

S==f

S=t

S=f

S=f,
S==f

S=t,
S==t

1

2

3

open

move open,
close,
move

close

close,
move

open

Worklist: 1, 1a, 1b, 2, 3,
 3a, 3b, 4, 5

1: if

2: open

4: close

5: move

3: if

1a: S==t 1b: S==f

3a: S==t 3b: S==f

{<1,u>}

{<1,t>} {<1,f>}

{<2,t>}
{<2,t>,
 <1,f>}

{<2,v>,
<1,f>}

{<2,t>, <1,v>}

{<1,t>}

{<1,t>, <1,f>}

Example: State-Propagation
Results

32

u

f

v
S==t

S=u, S=f, S=t,
S==u, S==f, S==t

S=u,
S==u

t

S=f,
S==f

S=t,
S==t

S==f

S=t

S=f

S=f,
S==f

S=t,
S==t

1

2

3

open

move open,
close,
move

close

close,
move

open

Worklist: 1, 1a, 1b, 2, 3,
 3a, 3b, 4, 5

1: if

2: open

4: close

5: move

3: if

1a: S==t 1b: S==f

3a: S==t 3b: S==f

{<1,u>}

{<1,t>} {<1,f>}

{<2,t>}
{<2,t>,
 <1,f>}

{<2,v>,
<1,f>}

{<2,t>, <1,v>}

{<1,t>}

{<1,t>, <1,f>}

Property verified
because final node 6
associated with
accepting property state 1

+
Discussion about FLAVERS
n Overall complexity is O(N^2⋅S)

n N is the # nodes in the model
n S is the number of states: property x constraints
n More precisely O(N^2 ⋅ SP ⋅ SC1 ⋅…⋅ SCn)

n In our experience, many important properties can
be proven with a small number of constraints
n Experimentally: performance sub-cubic

33 +
Evaluation of FLAVERS

n  Applied to collection of concurrent and sequential systems
such as
n  elevator, dining philosophers, reader writers, producers

consumers, Chiron user interface

n  Measured
n  Size of system model

n  Number of the TFG nodes and edges

n  Number of constraints needed

n  Performance in terms of space and time

34

+
Benefits of FLAVERS

n  Data Flow Analysis determines if the property is valid or not

n  Efficient

n  Always terminates

n  Conservative

n  Only validates the property if it is true for all/no possible
executions

n  When it can not validate the property, it provides a counter
example trace

n  Relatively easy to use

n  Relatively easy to write properties compared to predicate
calculus or temporal logic

n  Do not have to understand how the system works

35 +
Drawbacks of FLAVERS

n  Cannot express some properties of interest
n  Deadlock

n  Compound data types, e.g., for all I, A[I] > A[I+1]

n  Some counting, e.g, # Inserts > # Deletes

n  Infeasible paths
n  Usually requires several iterations to determine needed

constraints

36

11/15/12	

7	

+ Comparative Evaluation of FSV Tools 37 + Comparative Evaluation of FSV Tools 38

+
Some Research Directions for FSV

n  Support for specifying properties, e.g.,
n  Property patterns

n  Support for modeling systems, e.g.,
n  eliminating infeasible paths by employing such techniques as

symbolic execution or theorem proving

n  abstracting variable values

n  Support for optimizing verification algorithms, e.g.,
n  Alphabet refinement, partial order reduction, symbolic

representations

n  Support for visualizing counterexample traces

39 +
References

n  Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and
Gleb Naumovich. 2004. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. Softw. Eng.
Methodol. 13, 4 (October 2004), 359-430.
DOI=10.1145/1040291.1040292 http://doi.acm.org/
10.1145/1040291.1040292

40

+
Demonstration of FLAVERS
for Java…

41

