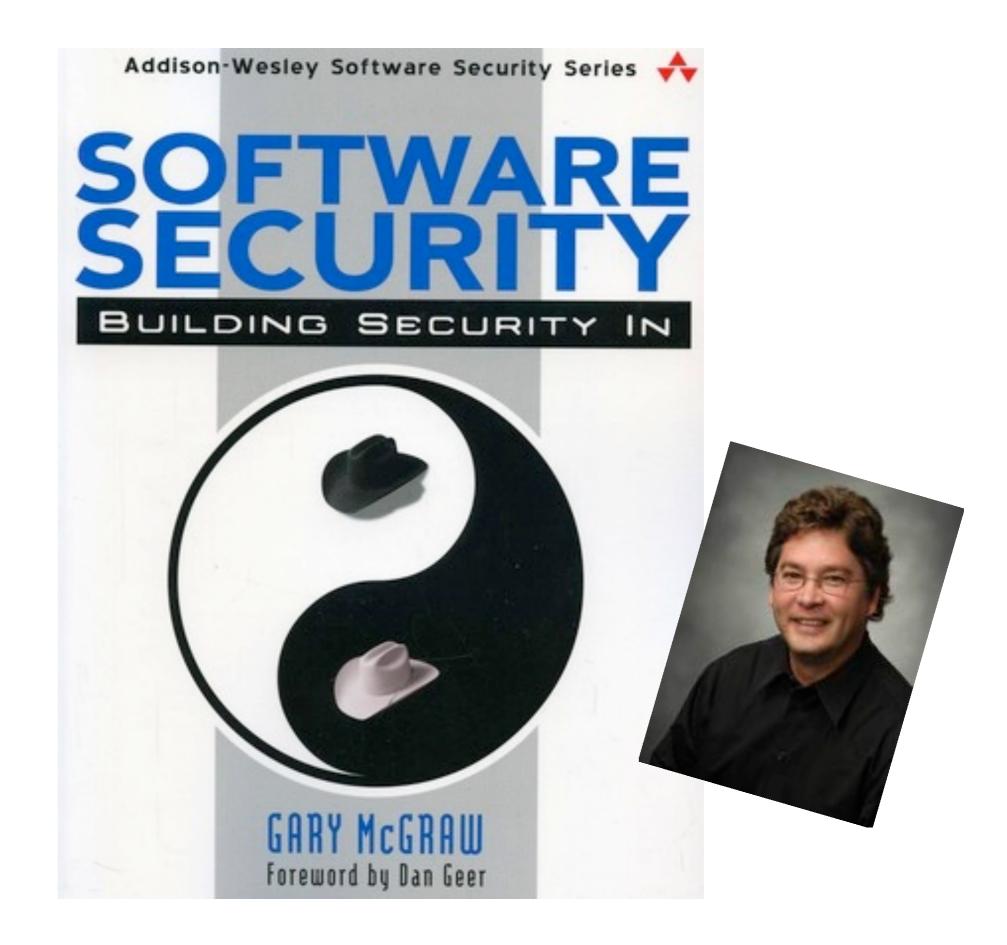
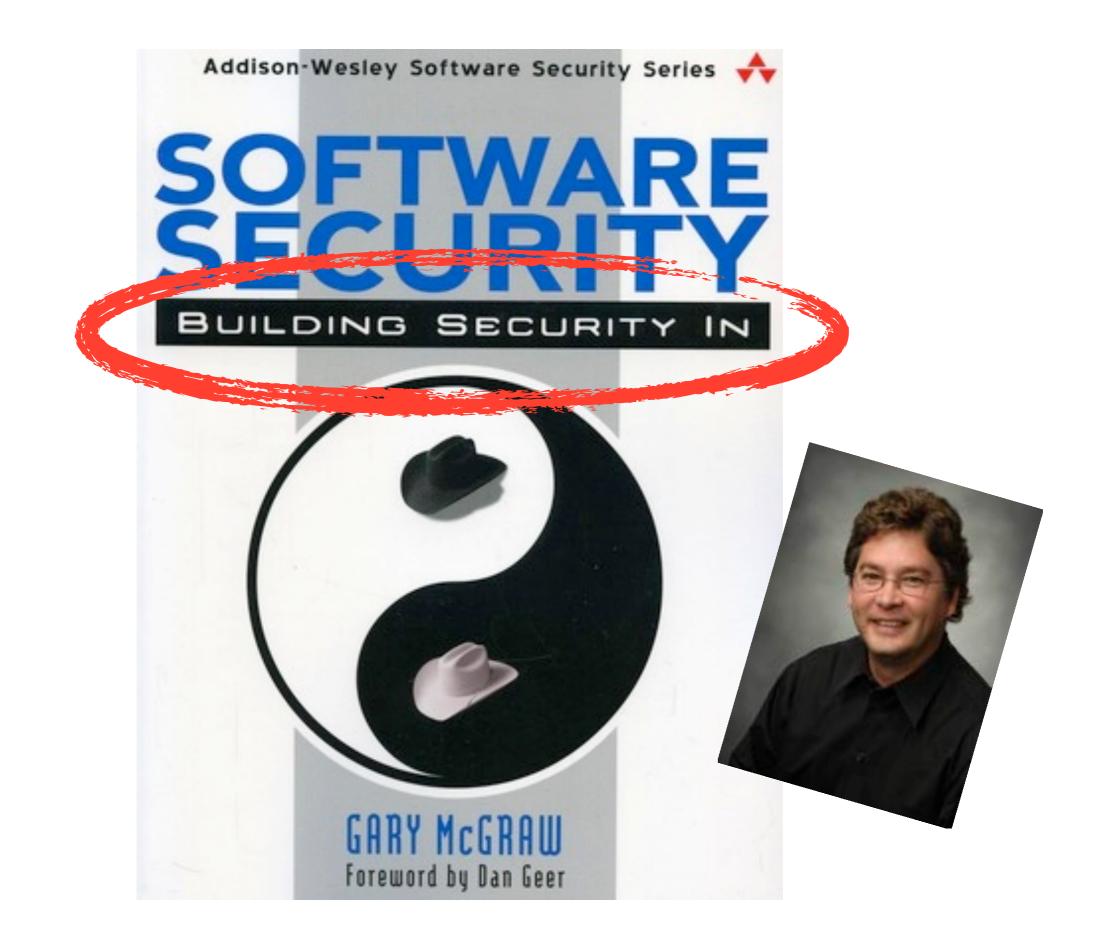
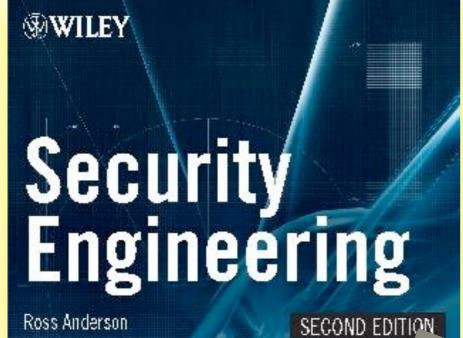
Notes from Prof. Brun

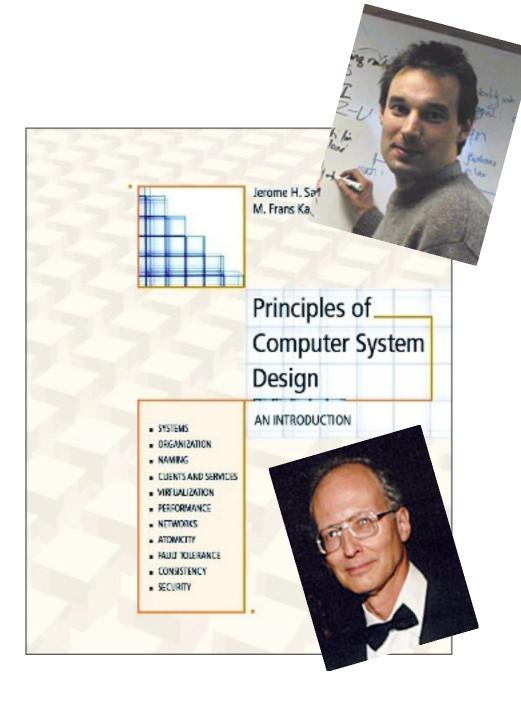

- Project plan due next Tuesday (email him if you have questions)
- Be ready to present project plans on Tuesday (10 minutes per group)

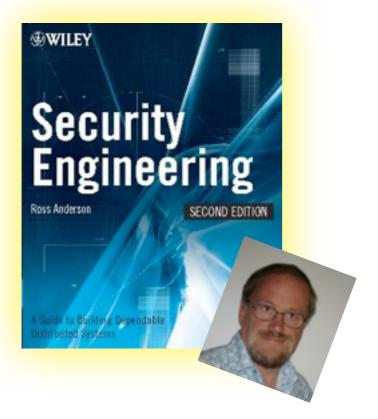



Software Security

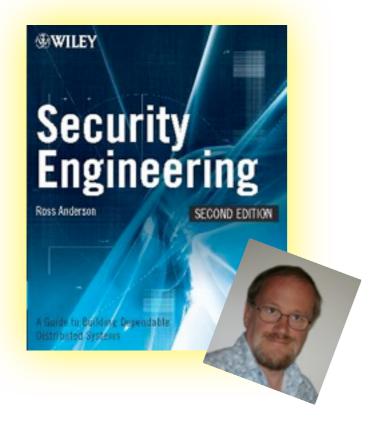
Ben Ransford ransford@cs.umass.edu

CS621 Fall 2012

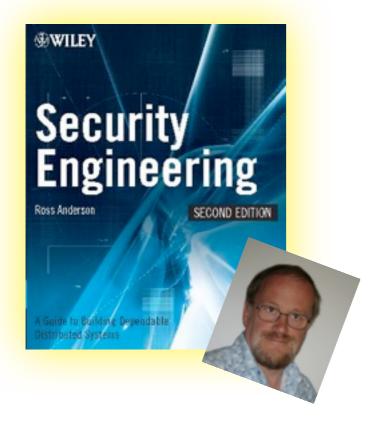



 \approx

A Guide to Building Dependable Distributed Systems


Ross Anderson, Security Engineering

Saltzer & Kaashoek, *P. of C. S. D.*



"Security engineering is about building systems to remain dependable in the face of malice, error, or mischance."

Security =

Policy + Mechanism + Assurance + Incentive

Security =

Policy + Mechanism + Assurance + Incentive

Insecurity ≈ How can I break this system?

Threat Modeling

- ... is your job in system design
- Think like an attacker
- Understand and prioritize incentives
- Imagine a **realistic** attacker

Attack Surface

- Which parts of your system interface with other stuff?
 - Network ports, I/O
 - Command-line inputs
 - Dependencies on other systems

Attacker Incentives

- For each element of attack surface:
 - What can a successful attacker gain?
 - What's it worth?

Chronicle / Kim Komenich

(Some) Kinds of Attackers

Value	Example	Attacker
Low	Generic PC	Script kiddie
Medium	Personal bank account	Phisher
High	State nuclear program	Another state

Script Kiddies

- Largely unskilled; main resource = time
- Use pre-packaged exploits
- May wish to sell compromised resources (e.g., sell zombie PCs to botnet)

Midrange "Hackers"

- Somewhat skilled; may have specific targets
- May be willing to use **social engineering**
- Motivations include fame, revenge, vandalism, \$\$\$

High-End Hackers

- Deep understanding of target
- Write exploits
- These days, sell exploits for \$\$\$\$\$

High-End Hackers

ADOBE READER	\$5,000-\$30,000
MAC OSX	\$20,000-\$50,000
ANDROID	\$30,000-\$60,000
FLASH OR JAVA BROWSER PLUG-INS	\$40,000-\$100,000
MICROSOFT WORD	\$50,000-\$100,000
WINDOWS	\$60,000-\$120,000
FIREFOX OR SAFARI	\$60,000-\$150,000
CHROME OR INTERNET EXPLORER	\$80,000-\$200,000
IOS	\$100,000-\$250,000

Even Higher-End Hackers

- E.g., state agencies (NSA, Mossad)
- Specific targets for **espionage** or **sabotage**
- Advanced persistent threats get into target and stay there

🕅 Siemens - analog-threshold							_ # X
Project Edit View Insert Online	Options	Tools Window Help				Tatally Internated Automa	tion
📑 📑 🗔 Save project 🔳 🐰 💷 🕻			G 🛄 🛄 🖉 Go online 🦪 (Go offline 🙏 🖪 🖪 🗰 🗙 🗐 🔲		Totally Integrated Automat PC	DRTAL
Project tree		1	.C_1 Program blocks		_ # = ×	Instructions	111
Devices						Options	
1900	1	.0.X.0.0 B. P		¢° €₀ 媝 '≡ '≡ €° ಞ	8		Instructions
		101 101 E. C. 40 E			-4		stru
- Provident Andread				Block interface		✓ Favorites	<u><u>a</u></u>
analog-threshold Add new device	^		t				
Devices & networks							~
PLC_1 [CPU 1214C AC/DC/Rly]	-	 Network 1: 			_	✓ Basic instructions	2
Device configuration		Comment				Name	P Testing
V. Online & diagnostics		1				General	asti
Program blocks	- 11		NORM_X Int to Real			Bit logic operations	= ng
Add new block	-					G Timer operations	-
Main [OB1]		0-			_	Counter operations	2
Technology objects	_		OUT - "Tag_6"			Comparator operations	(IN) Tasks
External source files		%/W64:P *Tag_4*:P —				Math functions	Iska
PLC tags		27648-				Move operations	0
C PLC data types		27040-	MPA			Conversion operations	- 0
Watch and force tables						< II	
Program info						 Extended instructions 	Libraries
Text lists			%/W64:P		-	Name	Tie
Local modules		"Tag_6"	%MD80			Date and time-of-day	2
- Fill Common data	~	-				Creins - Char	~
✓ Details view		 Network 2: 				< II	>
		Comment				✓ Technology	
Name Addres	e					Name	Des
, iddite	1.11	100000				Counting	
		%MD80 "Tag_6"		%Q0.0		PID Control	
		>		"Tag_1"		Motion Control	
		Real					
		0.5					
					~		
				-			
1				On-Screen Keyboard			
				File Keyboard Settings Help			
Portal view 🔂 Overvie	W	🖀 Main (OB1)		esc F1 F2 F3 F4	F5 F6 F7 F8 F9 F10 F	F11 F12 page sik brk	


Cryptography Do's & don'ts

Note: cryptography != security

Rule #1

Don't design your own cipher! Use an existing one.

== Use AES.

Don't pull a Mifare

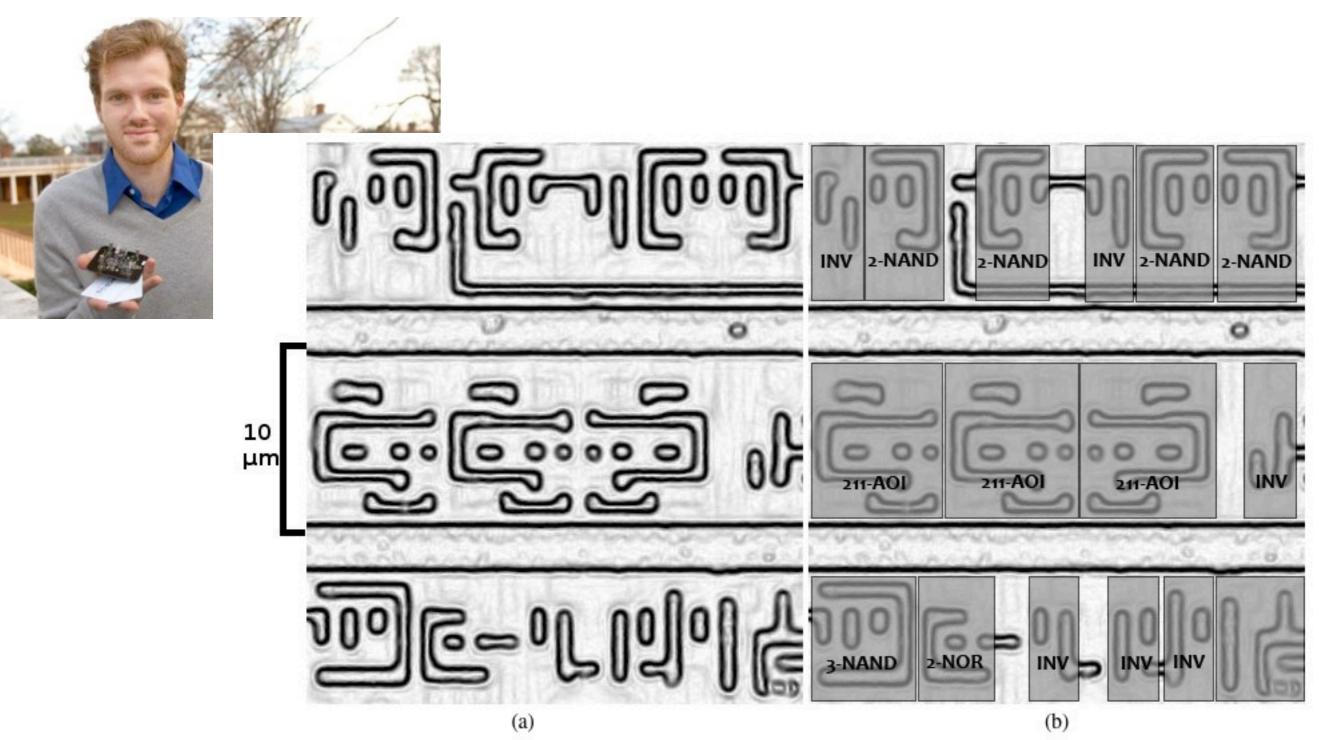


Figure 1: (a) Source image of layer 2 after edge detection; (b) after automated template detection.

Rule #2

Don't rely on security through obscurity. Your system's design will become known.

== Assume only the keys are secret.

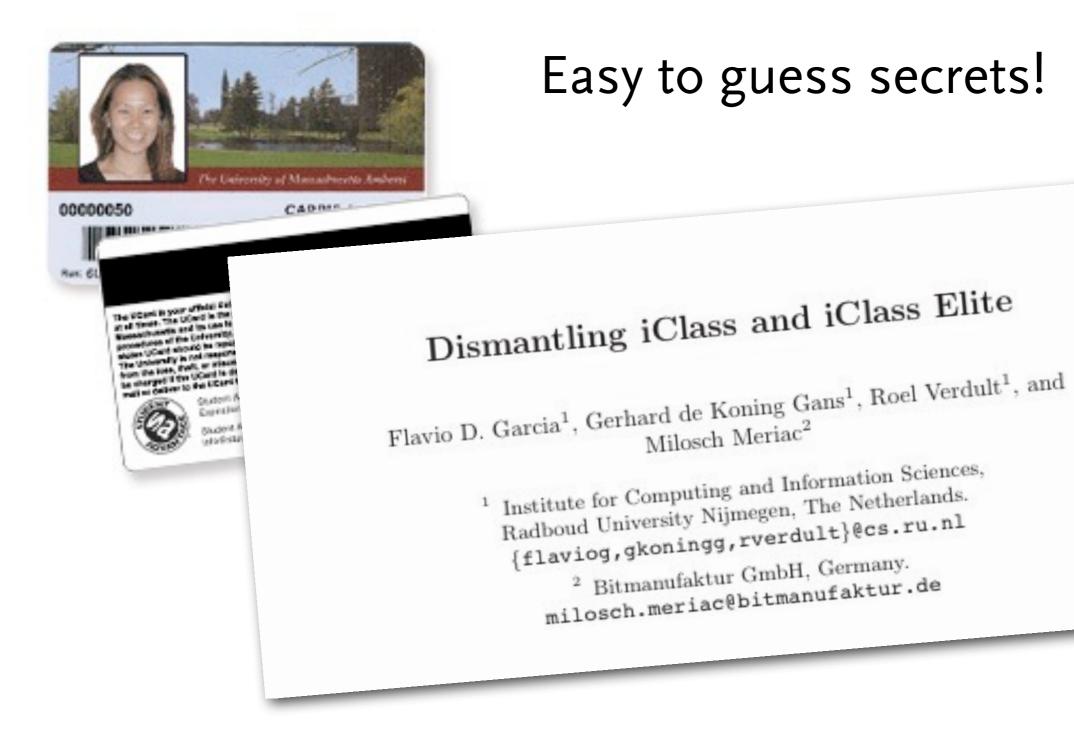
Rule #3

Don't use randomness incorrectly or use predictable "randomess." **Bad randomness makes attacks easy.**

== Use TRNG or a good seeded PRNG

Good PRNG

- Doesn't repeat itself (long **period**)
- Does use sources of "random" bits


Key			
Please generate some randomn	ess by moving the m	ouse over the blar	nk area.
Actions			
Actions Generate a public/private key pa	ir		Generate
Generate a public/private key pa	air		Generate
	air		<u>G</u> enerate Load
Generate a public/private key pa		Save p <u>u</u> blic key	
Generate a public/private key pa Load an existing private key file		Save p <u>u</u> blic key	Load

Bad PRNG

Easy to guess secrets!

Bad PRNG

Note: Multiple PRNGs

(demo of Linux /dev/urandom vs. /dev/random)

Don't use urandom when you want random.

Harping on Randomness

Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices

Nadia Heninger^{†*} Zakir Durumeric^{‡*}

[†] University of California, San Diego nadiah@cs.ucsd.edu Eric Wustrow[‡] J. Alex Halderman[‡]

[‡]The University of Michigan {zakir, ewust, jhalderm}@umich.edu

Harping on Randomness

Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices

Nadia Heninger^{†*} Zakir Durumeric^{‡*}

[†] University of California, San Diego nadiah@cs.ucsd.edu Eric Wustrow[‡] J. Alex Halderman[‡]

[‡]The University of Michigan {zakir, ewust, jhalderm}@umich.edu

"We found that 5.57% of TLS hosts and 9.60% of SSH hosts share public keys in an apparently vulnerable manner, due to either insufficient randomness during key generation or device default keys" (source: factorable.net)

Debian OpenSSL disaster

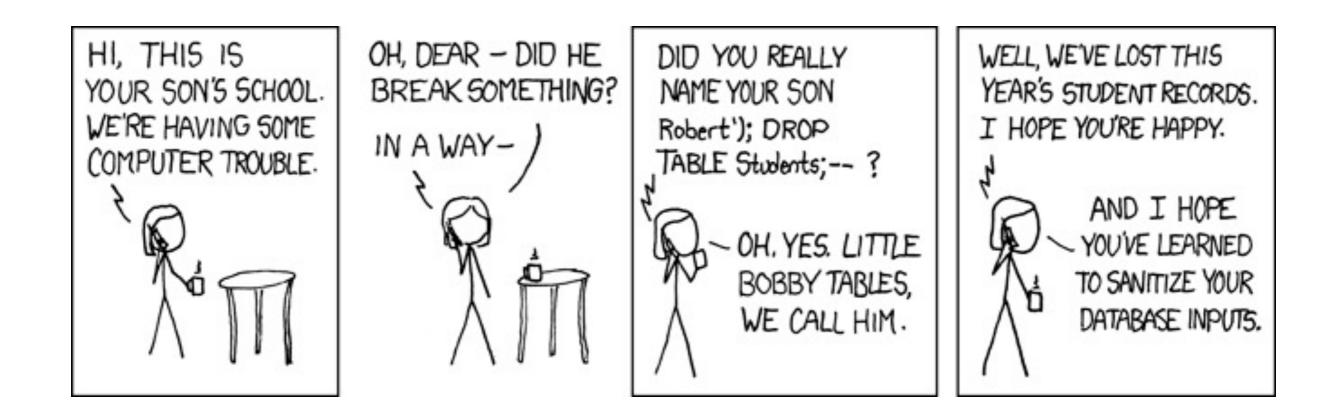
(Don't trust your tools blindly!)

Greatest Hits (and how not to get hit)

please put on your C/C++ hats

Buffer overflows (super common)

strcpy(dest, user_supplied_input);


Use-after-free (somewhat common) void f (p_t *p) { ...; free(p); }

f(my_pointer); *my_pointer = 0x1234;

Double free (not all that common) void f (p_t *p) { ...; free(p); }

f(my_pointer);
free(my_pointer);

Input validation

Cross-site scripting (super super super super common)

Hello my name is <script>stealStuff();</script>