Speculative analysis
and vision brainstorm

CMPSCI 521/621
UMass Amherst, Fall 2012

Any questions about last time?

Mutation testing
Model inference, checking
Bug localization

Symbolic execution

Project ideas assignment

Due Tuesday Sept 18, 9 AM
— short write up (no more than 1 page)

Work individually or in groups of 2
Presentation (be ready to go Tuesday 9/18)
Submit 2 things:

— write up

—slides

http://people.cs.umass.edu/~brun/class/CS521.621/ideaProposal.pdf

Project idea must include:

* Aresearch question

* The key idea behind
technique / tool / experiment

* Evaluation plan

* You are not graded on whether your idea is
selected.

i Any questions?

Plan for today

I'll describe speculative analysis
(a dynamic and static analysis technique)

I'll demonstrate a couple of speculative
analysis tools (examples of past projects)

You'll brainstorm (with your neighbors)
possible project ideas and we’ll discuss some

DECISION MAKING

Implement a new feature?
Incorporate another developer's changes?

Fix a bug?
DECISION MAKING

Upgrade a library?
Refactor for code reuse?

Run tests?

Implement a new feature?
Incorporate another developer's changes?

Fix a bug?
DECISION MAKING

Developers often make decisions based on experience and intuition.)

Upgrade a library?
Refactor for code reuse?

Run tests?

Can we predict the future

to help make decisions?

Speculative analysis: predict the future and analyze it

]

current program

Speculative analysis: predict the future and analyze it

]

current program

speculate

Speculative analysis: predict the future and analyze it

speculate

refactor

current program

Speculative analysis: predict the future and analyze it

refactor

ctor
refactor

current program

refactor

Speculative analysis: predict the future and analyze it

refactor

G refactor

refactor

current program analyze

execute test suite

Speculative analysis: predict the future and analyze it

G refactor

refactor

current program

inform developer

of resulting test failures

refactor

analyze

execute test suite

Quick Fix Scout J

Collaborators: Kivang Muslu, Reid Holmes, Michael D. Ernst, and David Notkin

public class UnresolvableType {

private string name;

= public veid setName(String arg) {
name = arg;

}

Eclipse provides Quick Fixes to resolve compilation errors. J

public class UnresolvableType { public class UnresolvableType {
3 private string name; E private string name;
(3 Create dass string’ @ (0) Change to 'String' (java.lang)
= public void se @ create interface 'string' = public veoid se| & (1) Change to ‘StringBuffer' (java.lang)
] name = arg & Change to 'Spring' (javax.swing)] name = arg| @ (1) Change to 'stringHolder' (org.omg.COREA)
} # Change to 'String’ (java.lang) 1 @ (1) Change to 'STRING' (javax.print. DecFlavar)
Change to 'STRING' (javax.print.DocFlavaor) @ (1) Change to 'StringWriter' (ava.io)
} & Change to 'StringBuffer’ (java.lang) } @ (1) Change to "Spring’ (javax.swing)
& Change to 'StringHolder' {org.omg.CORBA) @ (1) Change to 'StringReader’ (java.io)
Change to ‘StringReader’ (java.io) @ (1) Create dass 'string’
Change to 'StringWriter' (java.io) a (1) Create interface 'string'
Create enum 'string’ [E] (1) Create enum 'string’
© Add type parameter 'string' to 'UnresclvableType' 'string’ to ‘UnresolvableType'
& Fix project setup...
Press "Crl+1" to go wo ariginal posison Press "Cirl+1" to go to oniginal position
But Eclipse can’t tell which fix is best. J We can speculatively apply each fix to find out how many errors remain. J
public class UnresolvableType { public class UnresolvableType {
] private string name;] private string name;

public void setName(String arg) {
dEls = ST
1 @ Create dass name'
€ Create interface 'name’
T & Change to 'NA' (javax.print.attribute. standard. MediaSize)
@ Change to 'Name' (java.util.jar. Attributes)
@ Change to 'Name' (javax.lang.model. element)
& Change to 'Name' (Gavax.naming)
& Change to 'Name' (Javax.xml.soap)
@ Change to 'Namelist' (org.w3c.dom)
@ Change to 'Naming' (java.rmi)
& Change to 'Node' (javax.xml.soap)
& Change to 'Nede' {org.w3c.dom)
O create enum name’
© Add type parameter ‘name’ to ‘UnresolvableType
© Add type parameter ‘name’ to 'setName(String)’
@

Press ‘Crl+1' to go t eriginal posion

Sometimes, local fixes cannot resolve an error.

J

public void setName(String arg) {
name = arg;

} @ (0) UnresolvableType.java: 4: 18: Change "string’ to 'String’ (ava.lang)
& (2) Change to Mode' {org.w3c.dom)
T @ (2) Change to MName' (javax.naming)
& (2) Change to 'Naming' (java.rmi)
& (2) Change to 'Mame' (javax.xml.soap)
@ (2) Change to Mode' (javax.xml.soap)
& (2) Change to ‘NamelList' (org.w3c.dom)
& (2) Change to ‘Name' (javax.lang.model.element)
@ (2) Add type parameter 'name’ to 'setName(String)’
@ (2) Add type parameter 'name’ to ‘UnresclvableType'
@ (2) Fix project setup...
[C] (Z) Create dass 'name'
[1] (Z) Create interface 'name'
(E) (2) Create enum ‘name’
@ (2) Change to MA' (javax.print.attribute, standard. MediaSize)
i(2) Change to Mame' (java.util.jar. Attributes) |
Press 'Cri+1" to 0o to original position

Speculation can discover remote fixes that resolve errors. |

Complex error dependencies

public class ExceptionalObject {
= public void exceptionalMethod() {
throw new MyException();

}

public class SafeObject {
= public void safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();

} catch (MyException e) {}

http://quick-fix-scout.googlecode.com

Complex error dependencies

public class ExceptionalObject {
= public void exceptionalMethod() {
throw new MyException();

}

public class SafeObject {
= public void safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
eo.exceptionalMethod();
} catch (MyException e) {}

H 11 Remove catch dause

Prass ‘Cri+1 t go 1o ciginal pesson

http://quick-fix-scout.googlecode.com

Complex error dependencies

public class ExceptionalObject {
= public veoid exceptionalMethod() {
throw new MyException();

1

public class SafeObject {
= public veoid safeMethod() {
try {
ExceptionalObject eo =
new ExceptionalObject();
e0.exceptionalMethod();
} catch (MyException e) {}
U (0) ExceptionalObject.java:6: 12: Add throws dedaration to ‘exceptiona
ause with throws

Press 'Ciri+1"togoto o

http://quick-fix-scout.googlecode.com

Speculative analysis for Quick Fix

quick fix

quick fix

UiCK TIX
g quick fix

current program analyze

compile

inform developer

of resulting compilation errors

Exploring the future

future version
of the program

present version
of the program

past version
of the program

Exploring the future

future version
of the program

present version
of the program

past version
of the program

% o) > . % % o >
% 9, % f’/% Y% % % %
% &, © S % X
o) % () 0, . % 0 o) % ()
%,) (o4 S % 2] %, & (o4
%, G, % oG e &, e o
7 S %o) %o, Sy 7 S ze)
© Z %,] 2 © Z %,
© A © © %,
© ©
Exploring the future Exploring the future
past version present version future version past version present version future version
of the program of the program of the program of the program of the program of the program
. % % o} <, . % % o} <, S
:))/ %, S\Q”@ % o%) %O; f)/% S\% % oOf/,; o,% O@oo
%, 0, %/é) % 0,05, o) % %
S, % P % %, o %05 % % %, o i
% & (*7 ~ % & © ~ o @
(A ® o) %, (A) o () %, >
&% %% % R 4, &% %% % R 4, %
© © 00/_ © o 00/_ N
% % °

Continuous development

o compilation [Childers et al. 2003; Eclipse 2011]

@ execution [Henderson and Weiser 1985; Karinthi and Weiser 1987]
o testing [Saff and Ernst 2003, 2004]

@ version control integration [Guimardes and Rito-Silva 2010]

Continuous development
o compilation [Childers et al. 2003; Eclipse 2011]
@ execution [Henderson and Weiser 1985; Karinthi and Weiser 1987]
o testing [Saff and Ernst 2003, 2004]
@ version control integration [Guimardes and Rito-Silva 2010]

Speculative analysis is predictive.

Proactive detection of collaboration conflicts |

Collaborators: Reid Holmes, Michael D. Ernst, and David Notkin

Version-control terminology

Proactive conflict detection applies to both
centralized and distributed version control.

distributed (hg, git) ‘ centralized (cvs, svn)
save
update and commit

local commit: commit
incorporate: pull and push

The Gates conflict

The Gates conflict

The Gates conflict

The Gates conflict

The Gates conflict

The Gates conflict

M M
T T
w w
Th Th
F F

M

T

The Gates conflict The Gates conflict

M M
T T
w w
Th Th
F F
M M
T T
w w
Th Th

F

The Gates conflict The Gates conflict

M M
T T
w w
Th Th
F F
M M
T T
w w
Th Th
F F
M M
T T

w

The Gates conflict

v oLy S

The information was all there, but the developers didn't know it.J

What could well-informed developers do?

e avoid conflicts

What could well-informed developers do?

®)

e avoid conflicts

Th e become aware of conflicts earlier

Introducing Crystal: a proactive conflict detector

DEMO

Introducing Crystal: a proactive conflict detector

DEMO

[ESEEN)

-
& Crystal - George
File About

master Paul Ringe John

e TR D

master Jeff Roy Bob Tom

el N S

tion: hg feich
ICc QUENCes: New I i lip will be AHEAD
|[Commilters: George and Tom

http://crystalvc.googlecode.com

Speculative analysis in collaborative development

speculate

ocal commit E
/! incorporate from master
incorporate to master

current program

Nincorporate from Melinda

analyze
merge
compile
test

inform developer

collaborative relationships

Reducing false positives in conflict prediction

Collaborative awareness

Reducing false positives in conflict prediction

Collaborative awareness

o Palantir [Sarma et al. 2003]
o FASTDash [Biehl et al. 2007]
@ Syde [Hattori and Lanza 2010]

o CollabVS [Dewan and Hegde 2007]
o Safe-commit [Wloka et al. 2009]
@ SourceTree [Streeting 2010]

o Palantir [Sarma et al. 2003]
o FASTDash [Biehl et al. 2007]
@ Syde [Hattori and Lanza 2010]

Crystal analyzes concrete artifacts,
eliminating false positives and false negatives.

o CollabVS [Dewan and Hegde 2007]
o Safe-commit [Wloka et al. 2009]
@ SourceTree [Streeting 2010]

Utility of conflict detection

@ Are textual collaborative conflicts a real problem?

o Can textual conflicts be prevented?

@ Do build and test collaborative conflicts exist?

Are textual collaborative conflicts a real problem?

histories of 9 open-source projects:

size: 26K-1.4MSLoC
developers: 298
versions: 140,000

Perl5, Rails, Git, jQuery, Voldemort,
MaNGOS, Gallery3, Samba, Insoshi

Are textual collaborative conflicts a real problem?

Q
M histories of 9 open-source projects:
" size: 26K-1.4MSLoC
™ developers: 298
E versions: 140,000
M
T Perl5, Rails, Git, jQuery, Voldemort,
¥\rl1 MaNGOS, Gallery3, Samba, Insoshi
F
M
T
w

Are textual collaborative conflicts a real problem?

How frequent are textual conflicts?

S42mn3s4zTmn3is4qaz

Are textual collaborative conflicts a real problem? Are textual collaborative conflicts a real problem?
Q
M How frequent are textual conflicts? M How frequent are textual conflicts?
T . T .
W 16% of the merges have textual conflicts. W 16% of the merges have textual conflicts.
Th Th
F F How long do textual conflicts persist?
M M
T T
w w
Th Th
F - F
M M
T T
w w
Are textual collaborative conflicts a real problem? Are textual collaborative conflicts a real problem?
Q
M How frequent are textual conflicts? M How frequent are textual conflicts?
T . T .
W 16% of the merges have textual conflicts. W 16% of the merges have textual conflicts.
Th Th
F How long do textual conflicts persist? F How long do textual conflicts persist?
'\TA Conflicts live a mean of 9.8 and median of 1.6 days. '\TA Conflicts live a mean of 9.8 and median of 1.6 days.
W The worst case was over a year. W The worst case was over a year.
Th Th
F F How long do textually-safe merges persist?
M M
T T
w w
Are textual collaborative conflicts a real problem? Can textual conflicts be prevented?
Q Where do textual conflicts come from?
M How frequent are textual conflicts? .
T .
W 16% of the merges have textual conflicts.
Th
F How long do textual conflicts persist?
'\TA Conflicts live a mean of 9.8 and median of 1.6 days.
W The worst case was over a year.
Th
F How long do textually-safe merges persist?
'_\: Textually-safe merges live a mean of 11.0 and
w median of 1.9 days.

Can textual conflicts be prevented?

Where do textual conflicts come from?
93% of textual conflicts developed from safe merges.

Can textual conflicts be prevented?

Where do textual conflicts come from?
93% of textual conflicts developed from safe merges.

V.

The information Crystal computes can help prevent conflicts. J

Do build and test collaborative conflicts exist?

rozram conflicts ‘ safe

prog ‘ textual ‘ build ‘ test ‘ merges
Git 17% | <1% | 4% 79%
Perl5 8% 4% | 28% 61%

Voldemort 17% | 10% | 3% 69%

Does merged code fail to build or fail tests?
One in three conflicts are build or test conflicts.

Microsoft Beacon

@ A centralized version control-based tool.
o Microsoft product groups are using Beacon to help identify conflicts
earlier in the development process.

@ Measure Crystal's effect on conflict frequency
and persistence

o Evaluate qualitative effects on user experience
o Identify what helps and what does not

Additional collaborators: Kivang Muslu, Christian Bird, Thomas Zimmermann

Contributions of speculative analysis

past version present version future version
of the program of the program of the program
. % % o} < S
Ty % %% %, % %,
. % % @ 2, 2 <,
s, 0 S % 2 S, %
0, % % S,) % =
O&/_ O/;(O,> X, (,m &O’ /p&
CHC SN 0\% %y % %,
S 7o % o %, %,)
Q L.
© (> d}&
%

Improving developer awareness when making decisions

@ compute precise, accurate information
o convert a pull mechanism to a push one

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
@ informative, efficient analyses

@ inferable developer intent

Next speculations:
@ automated fault removal

o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

dobe Aot Updter =@

Adobe Acrobat is installing new updates

Time remaining

B3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

dobe Aot Updter =@

Adobe Acrobat is installing new updates

Time remaining: 20 seconds

B3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

dobe Aot Updter =@

Adobe Acrobat is installing new updates

Time remaining: 10 seconds

E3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

dobe Aot Updter =@

Adobe Acrobat is installing new updates

Time remaining: 40 seconds

E3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

dobe Aot Updter =@

Adobe Acrobat is installing new updates

Time remaining: 2 hours

E3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

dobe Aot Updter =@

Adobe Acrobat is installing new updates

Time remaining: 5 seconds

E3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

@ inferable developer inter‘:

‘Adobe Acrobat Updter =@
n Adobe Acrobat is installing new updates

Time remaining: 0 seconds

B3

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
@ informative, efficient analyses

o inferable developer intent

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions

@ informative, efficient analyses

. @ Self-Adapter = @8] %
e inferab
A USB driver has stopped working. I noticed that installing "Adobe Acrobat
update 9.2.1," led to this problem. Tl swap out the update.

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Expanding the space of speculative analysis

Identify a domain with:
o likely, automatable developer actions
@ informative, efficient analyses

o inferable developer intent

Next speculations:

@ automated fault removal
o target platform deployment

@ test generation and augmentation

Automating decision making: self-adaptation

specification

running system

Automating decision making: self-adaptation

generate adaptations

potential

specification
systems

running system

Automating decision making: self-adaptation

generate adaptations [. .
specification
systems

running system observe

analysis

Automating decision making: self-adaptation

generate adaptations [.
specification
systems

running system observe

employ
adaptation deCide analysis

What part of that
would have been a good project?

* |dea 1: Quick Fix Scout

— Identify quick fixes as the speculative actions and
compilation errors as the analysis function

— Build the Eclipse plug-in
— Do a small, qualitative evaluation on a few users

Research question: Does precomputing effects
of quick fix suggestions affect developer
behavior?

What part of that
would have been a good project?

* |Idea 2: Conflict frequency

— Collect ~8 large, open-source, with-tests programs
with their histories from github.com

— Analyze the frequency and duration of textual,
compile, and test conflicts

Research guestion: How often do textual,
compile, and test conflicts occur in open-source
development and how long do they last?

What part of that
would have been a good project?

* Idea 3: Crystal

— Identify version control operations as the speculative
actions and conflicts as the analysis function

— Build Crystal
— Do a small, qualitative evaluation on a few users

Research question: Does precomputing conflicts
and making developers aware of them reduce the
frequency and duration of conflicts?

What part of that
would have been a good project?

* Idea 4: Quick Fix Scout evaluation
(suppose Quick Fix Scout already exists)

— Perform a controlled experiment on ~40 developers (students
well familiar with Eclipse)

— Build an Eclipse plug in to log (record) developer actions

— Give each developer a set of small programming tasks and ask
him/her to resolve compilation errors

— Half the time, have the developer use QFS, the other half, just QF
— Measure task completion times and analyze it for statistical
improvement

Research question: Does QFS reduce the time it takes
developers to resolve compilation errors?

Brainstorm topic ideas

Get a piece of paper

Turn to your neighbor

Discuss possible research projects

— brainstorm, write down all kinds of crazy ideas

When the ideas stop flowing, discuss the ones
you like best in some depth

Be prepared to tell us your most promising idea

