Context Free Grammar

CS 585, Fall 2017

Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2017

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Tuesday, November 14, 17

http://people.cs.umass.edu/~brenocon/inlp2016
http://people.cs.umass.edu/~brenocon/inlp2016

® Syntax: how do words structurally combine to form
sentences and meaning?

® Representations

e Constituents
® [the big dogs] chase cats

® [colorless green clouds] chase cats

® Dependencies
¢ The dog chased the cat.
e My dog,a big old one, chased the cat.

® Idea of a grammar (G): global template for how sentences /
utterances / phrases w are formed, via latent syntactic
structure y

® Linguistics: what do G and P(w,y | G) look like?
® Generation: score with, or sample from, P(w,y | G)
® Parsing: predict P(y | w, G)

2

Tuesday, November 14, 17

Is language context-free?

3 [Examples from Eisenstein (2017)]

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures

® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures

® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

® Context-free: hierarchical recursion

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures

® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

® Context-free: hierarchical recursion

® (Center-embedding: classic theoretical argument for CFG vs.
regular languages

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures

® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

® Context-free: hierarchical recursion

® (Center-embedding: classic theoretical argument for CFG vs.
regular languages

® (10.1) The catis fat.

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures

® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*

® Context-free: hierarchical recursion

® (Center-embedding: classic theoretical argument for CFG vs.
regular languages

® (10.1) The catis fat.
® (10.2) The cat that the dog chased is fat.

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures
® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® (Center-embedding: classic theoretical argument for CFG vs.
regular languages
® (10.1) The cat is fat.
® (10.2) The cat that the dog chased is fat.
® (10.3) *The cat that the dog is fat.

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures
® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® (Center-embedding: classic theoretical argument for CFG vs.
regular languages
(10.1) The cat is fat.
(10.2) The cat that the dog chased is fat.
(10.3) *The cat that the dog is fat.

(10.4) The cat that the dog that the monkey kissed chased is
fat.

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures
® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® (Center-embedding: classic theoretical argument for CFG vs.
regular languages
(10.1) The cat is fat.
(10.2) The cat that the dog chased is fat.
(10.3) *The cat that the dog is fat.

(10.4) The cat that the dog that the monkey kissed chased is
fat.

® (10.5) *The cat that the dog that the monkey chased is fat.

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Is language context-free?

® Regular language: repetition of repeated structures
® e.g Justeson and Katz (1995)’s noun phrase pattern:
(Noun | Adj)* Noun (Prep Det? (Noun | Adj)* Noun)*
® Context-free: hierarchical recursion
® (Center-embedding: classic theoretical argument for CFG vs.
regular languages
(10.1) The cat is fat.
(10.2) The cat that the dog chased is fat.
(10.3) *The cat that the dog is fat.

(10.4) The cat that the dog that the monkey kissed chased is
fat.

® (10.5) *The cat that the dog that the monkey chased is fat.

® Competence vs. Performance!?

3 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Hierarchical view of syntax

® “a Sentence made of Noun Phrase followed by a
Verb Phrase”

N

{

NP
 John |
the man

 the elderly janitor

b. S — NPVP

{

VP
[arrived

ate an apple

| looked at his WatchJ

)

—

(1)

[From Phillips (2003)]

Tuesday, November 14, 17

http://people.cs.umass.edu/~brenocon/inlp2016/readings/phillips2003-syntax.pdf
http://people.cs.umass.edu/~brenocon/inlp2016/readings/phillips2003-syntax.pdf

Is language context-free?

® Practical examples where nesting seems like a
useful explanation
® The processor has |0 million times fewer transistors

on it than todays typical micro- processors, runs much
more slowly, and operates at five times the voltage...

e S NNV
VP — VP3S [VPN3S | ...
VP3S — VP3S,VP3S, and VP3S |VBZ |VBZ NP | ...

5 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

° Regular language @ <=> RegEx <=> paths in finite state machine
® Context-free language <=> CFG <=> derivations in pushdown automaton

® A context-free grammar is a 4-tuple:

N a set of non-terminals
Y. aset of terminals (distinct from V)
R aset of productions, each of the form A — 3,

where A€ Nand g € (X UN)*
S adesignated start symbol

® Derivation: sequence of rewrite steps from S to a string (sequence of
terminals, i.e. words)

® Yield: the final string

® A CFGisa“boolean language model”
A probabilistic CFG is a probabilistic language model:
® Every production rule has a probability; defines prob dist. over strings.
6

Tuesday, November 14, 17

Example

S
/\

NP VP
| Y T
PRP VBZ NP PP
| | | T T~
She eats NN IN NP
| | |

sushi with NNS
|

chopsticks
(S (NP (PRP She) (VP (VBZ eats)

(Np (NN sushi))
(pp (inwith) (NP (Nns chopsticks))))))

® All useful grammars are ambiguous: multiple derivations with same yield
® [Parse tree representations: Nested parens or non-terminal spans]

7 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Example

S
qQ _—

S — NP VP
NP VP | — T

| P PRP VBZ NP
PRP VBZ NP PP | | — T

| | | o She eats NP PP
She eats NN IN NP | — T~

| | | NN IN NP

sushi with NNS o |
| sushi with NNS

chopsticks -
chopsticks
(S (NP (PRP She) (VP (VBZ eats)
(NP (NN Sushi))
(pp (nwith) (np (Nns chopsticks))))))

(S(NP (PRP She) (VP (VBZ eats)
(np (NP (N Sushi)) (pp (nwith) (e (Nns chopsticks)))))))

® All useful grammars are ambiguous: multiple derivations with same yield
® [Parse tree representations: Nested parens or non-terminal spans]

7 [Examples from Eisenstein (2017)]

Tuesday, November 14, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Constituents

e Constituent tree/parse is one representation of sentence’s syntax.
What should be considered a constituent, or constituents of the
same category!

® Substitution tests
® Pronoun substitution
® (Coordination tests

® Simple grammar of English

Must balance overgeneration versus undergeneration
Noun phrases

NP modification: adjectives, PPs

Verb phrases

Coordination...

Tuesday, November 14, 17

® stopped here | |/14

Tuesday, November 14, 17

Parsing with a CFG

® Task:given text and a CFG, answer:
® Does there exist at least one parse!?
® Enumerate parses (backpointers)

® Cocke-Kasami-Younger algorithm
® Bottom-up dynamic programming:
Find possible nonterminals for short spans of

sentence, then possible combinations for higher
spans

® Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization)

Tuesday, November 14, 17

NP -> Adj NP

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

o yummy foods , store -

For cell [i,j] (loop through them bottom-up) | [Recognizer: per span, record list of

For possible splitpoint k=(i+1)..(j-1): possible nonterminals
For every B in [i,k] and C in [kij],
If exists rule A ->.B C, , Parser: per span, record

add A to cell [l’]] (Recogmzer) possible ways the

... OF ... nonterminal was

add (AB,C, k) to cell [ij] (Parser) | <"*reeee

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

9

o yummy foods , store -

For cell [i,j] (loop through them bottom-up) | [Recognizer: per span, record list of

For possible splitpoint k=(i+1)..(j-1): possible nonterminals
For every B in [i,k] and C in [kij],
If exists rule A ->.B C, , Parser: per span, record

add A to cell [l’]] (Recogmzer) possible ways the

... OF ... nonterminal was

add (AB,C, k) to cell [ij] (Parser) | <"*reeee

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

9

o yummy foods , store -

For cell [i,j] (loop through them bottom-up) | [Recognizer: per span, record list of

For possible splitpoint k=(i+1)..(j-1): possible nonterminals
For every B in [i,k] and C in [kij],
If exists rule A ->.B C, , Parser: per span, record

add A to cell [l’]] (Recogmzer) possible ways the

... OF ... nonterminal was

add (AB,C, k) to cell [ij] (Parser) | <"*reeee

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

9

o yummy foods , store -

For cell [i,j] (loop through them bottom-up) | [Recognizer: per span, record list of

For possible splitpoint k=(i+1)..(j-1): possible nonterminals
For every B in [i,k] and C in [kij],
If exists rule A ->.B C, , Parser: per span, record

add A to cell [l’]] (Recogmzer) possible ways the

... OF ... nonterminal was

add (AB,C, k) to cell [ij] (Parser) | <"*reeee

Tuesday, November 14, 17

NP -> Adj NP

CKY
Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP

o yummy foods , store -

For cell [i,j] (loop through them bottom-up) | [Recognizer: per span, record list of

For possible splitpoint k=(i+1)..(j-1): possible nonterminals
For every B in [i,k] and C in [kij],
If exists rule A ->.B C, , Parser: per span, record

add A to cell [l’]] (Recogmzer) possible ways the

... OF ... nonterminal was

add (AB,C, k) to cell [ij] (Parser) | <"*reeee

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

O

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

YO

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

YO

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

2

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

0 yummy foods , store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

2

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

0 yummy foods , store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

0 yummy foods , store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

Tuesday, November 14, 17

