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• Syntax: how do words structurally combine to form 
sentences and meaning?

• Representations

• Constituents

• [the big dogs] chase cats

• [colorless green clouds] chase cats

• Dependencies

• The dog chased the cat.

• My dog, a big old one, chased the cat.

• Idea of a grammar (G):  global template for how sentences / 
utterances / phrases w are formed, via latent syntactic 
structure y

• Linguistics:    what do G and P(w,y | G) look like?

• Generation:   score with, or sample from, P(w, y | G)

• Parsing:         predict P(y | w, G)
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Hierarchical view of syntax

• “a Sentence made of Noun Phrase followed by a 
Verb Phrase”
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Is language context-free?

• Practical examples where nesting seems like a 
useful explanation

• The processor has 10 million times fewer transistors 
on it than todays typical micro- processors, runs much 
more slowly, and operates at five times the voltage... 

•      S → NN  VP
    VP → VP3S | VPN3S | . . . 
VP3S → VP3S, VP3S, and VP3S | VBZ | VBZ NP | . . . 

5 [Examples from Eisenstein (2017)]
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• A context-free grammar is a 4-tuple:

6

180 CHAPTER 10. CONTEXT-FREE GRAMMARS

• pushdown automata define context-free languages;

• Turing machines define recursively-enumerable languages.

In the Chomsky hierarchy, context-free languages (CFLs) are a strict generalization of
regular languages.

regular languages context-free languages

regular expressions context-free grammars (CFGs)
finite-state machines pushdown automata
paths derivations

Context-free grammars define CFLs. They are sets of permissible productions which
allow you to derive strings composed of surface symbols. An important feature of CFGs
is recursion, in which a nonterminal can be derived from itself.

More formally, a CFG is a tuple hN, ⌃, R, Si:

N a set of non-terminals
⌃ a set of terminals (distinct from N )
R a set of productions, each of the form A ! �,

where A 2 N and � 2 (⌃ [ N)⇤

S a designated start symbol

Context free grammars provide rules for generating strings.

• The left-hand side (LHS) of each production is a non-terminal 2 N

• The right-hand side (RHS) of each production is a sequence of terminals or non-
terminals, {n, �}⇤, n 2 N, � 2 ⌃.

A derivation t is a sequence of steps from S to a surface string w 2 ⌃⇤, which is the
yield of the derivation. A derivation can be viewed as trees or as bracketings, as shown
in Figure 11.4.

If there is some derivation t in grammar G such that w is the yield of t, then w is in
the language defined by the grammar. Equivalently, for grammar G, we can write that
|T

G

(w)| � 1. When there are multiple derivations of w in grammar G, this is a case of
derivational ambiguity; if any such w exists, then we can say that the grammar itself is
ambiguous.

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Derivation: sequence of rewrite steps from S to a string (sequence of 
terminals, i.e. words)

• Yield: the final string

• A CFG is a “boolean language model”

• A probabilistic CFG is a probabilistic language model:

• Every production rule has a probability; defines prob dist. over strings.

•     Regular language     <=>  RegEx <=> paths in finite state machine

• Context-free language <=>  CFG   <=> derivations in pushdown automaton
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Example

• All useful grammars are ambiguous: multiple derivations with same yield

• [Parse tree representations: Nested parens or non-terminal spans]
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10.2. CONTEXT-FREE LANGUAGES 181

S

VP

NP

PP

NP

NNS

chopsticks

IN

with

NP

NN

sushi

VBZ

eats

NP

PRP

She

(S(NP(PRP She)(VP(VBZ eats)
(NP(NP(NN sushi))(PP (INwith)(NP(NNS chopsticks)))))))

S
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chopsticks
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with

NP

NN

sushi

VBZ

eats

NP

PRP

She

(S(NP(PRP She)(VP(VBZ eats)
(NP(NN sushi))
(PP(INwith)(NP(NNS chopsticks))))))

Figure 10.1: Two derivations of the same sentence, shown as both parse trees and brack-
etings

(c) Jacob Eisenstein 2014-2017. Work in progress. [Examples from Eisenstein (2017)]
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Constituents
• Constituent tree/parse is one representation of sentence’s syntax.  

What should be considered a constituent, or constituents of the 
same category?

• Substitution tests

• Pronoun substitution

• Coordination tests

• Simple grammar of English

• Must balance overgeneration versus undergeneration

• Noun phrases

• NP modification: adjectives, PPs

• Verb phrases

• Coordination...

8
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• stopped here 11/14

9
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Parsing with a CFG

• Task: given text and a CFG, answer:

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Cocke-Kasami-Younger algorithm

• Bottom-up dynamic programming:
Find possible nonterminals for short spans of 
sentence, then possible combinations for higher 
spans

• Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization)

10
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CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

11

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3
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